
This paper is included in the Proceedings of the 19th USENIX Symposium
on Operating Systems Design and Implementation.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-47-2

Open access to the Proceedings of the 19th USENIX Symposium
on Operating Systems Design and Implementation is sponsored by

Enabling Efficient GPU Communication
over Multiple NICs with FuseLink

Zhenghang Ren, Yuxuan Li, Zilong Wang, Xinyang Huang, Wenxue Li,
Kaiqiang Xu, Xudong Liao, Yijun Sun, and Bowen Liu, Hong Kong University of

Science and Technology; Han Tian, University of Science and Technology of China;
Junxue Zhang, Hong Kong University of Science and Technology; Mingfei Wang,

MetaX Integrated Circuits; Zhizhen Zhong, Massachusetts Institute of Technology;
Guyue Liu, Peking University; Ying Zhang, Meta; Kai Chen, Hong Kong University

of Science and Technology

https://www.usenix.org/conference/osdi25/presentation/ren

Enabling Efficient GPU Communication over Multiple NICs with FuseLink

Zhenghang Ren1 Yuxuan Li1 Zilong Wang1 Xinyang Huang1 Wenxue Li1 Kaiqiang Xu1

Xudong Liao1 Yijun Sun1 Bowen Liu1 Han Tian2 Junxue Zhang1 Mingfei Wang3

Zhizhen Zhong4 Guyue Liu5 Ying Zhang6 Kai Chen1

1iSINGLab, Hong Kong University of Science and Technology
2University of Science and Technology of China 3MetaX Integrated Circuits

4Massachusetts Institute of Technology 5Peking University 6Meta

Abstract

Machine learning (ML) clusters stack multiple network inter-
face cards (NICs) within each server to improve inter-server
GPU communication bandwidth. However, existing systems
fall short in fully utilizing NICs because of static GPU-NIC
bindings. This leads to bottlenecks at hot-spot NICs when
handling imbalanced communication in ML tasks. For ex-
ample, large language model serving instances may have dif-
ferent communication demands across NICs; expert-parallel
training tasks have imbalanced all-to-all traffic; and the em-
bedding transmission volumes during recommendation model
training vary across GPUs. To fully utilize all NICs, we pro-
pose FuseLink to enable efficient GPU communication over
multiple NICs. FuseLink extends inter-server network by in-
tegrating high-speed intra-server connections, and leverages
GPUs to efficiently relay traffic to idle NICs. We implement
FuseLink and integrate it into NCCL, so that ML applications
can benefit from FuseLink seamlessly without code modifi-
cations. Compared to NCCL, we demonstrate that FuseLink
achieves up to 212GBps bandwidth between two inter-server
GPUs and accelerates ML tasks with dynamic traffic patterns.
Specifically, it reduces the latencies of first-token generation
in LLM model servings by 1.04-2.73→, improves the training
throughput of mixture-of-experts model by up to 1.3→, and
accelerates deep learning recommendation model training by
up to 1.2→.

1 Introduction

Efficient communication among GPUs is crucial in dis-
tributed ML tasks, especially given the expanding scale
of AI infrastructure [9, 27, 32, 35, 53, 68]. Distributed ML
tasks are typically bounded by GPU communication band-
width [26, 32, 48, 54], driving the speed increase of both intra-
server 1 and inter-server network. For example, NVLink [14,

1Some GPU connections, like NVLink, link GPUs within a short range
between servers. However, we will still call them "intra-server connections"
to differentiate them from "inter-server connections" that use NICs.

GPUs (data)

Dedicated NICs

GPU Server

NVLink

PCIe

(a) Static GPU-NIC binding

GPUs (data)

NVLink + PCIe + NIC

FuseLink

GPU Server

(b) FuseLink
Figure 1: Current static GPU-NIC binding and FuseLink

39, 46, 52, 57] connects neighbouring GPUs with Tbps band-
width; RDMA [21,49,66] offers inter-server connections with
hundreds of Gbps bandwidth. However, RDMA NIC band-
width grows slower compared to intra-server bandwidth [11],
leaving inter-server connection a major bottleneck in dis-
tributed ML tasks.

To mitigate inter-server bottleneck, existing GPU clusters
stack multiple NICs within each server to improve inter-server
bandwidth [2, 23]. Currently, they bind each GPU communi-
cation to a specific PCIe-based NIC, as shown in Figure 1a.
Note that the figure omits the hierarchical structure of PCIe [7]
which leads to non-uniform bandwidths when a NIC access
GPUs through different paths. There usually exists only one
NIC that can provide full bandwidth for each GPU during
inter-server communication, while other NIC bandwidths are
limited by suboptimal PCIe paths.

Static binding is suitable for ML tasks with balanced traffic.
For instance, 3D parallel training [42, 53] divides models into
equal shards, producing identical traffic pattern across GPU
workers [34]. However, for widely-deployed ML tasks that
exhibit imbalanced inter-server traffic across NICs, stacking
NICs with static traffic binding does not necessarily improve
inter-server communication efficiency. Some workers may

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 91

demand higher bandwidth than a single NIC (§2.1). Examples
include disaggregated LLM serving [29, 40, 47, 69], mixture-
of-experts (MoE) models [18, 55], and deep learning recom-
mendation models (DLRM) [10, 25]. This traffic imbalance
can lead to suboptimal performance, with some NICs be-
ing bottlenecks while other NICs remain idle. Moreover, the
causes of traffic imbalance vary significantly, such as unpre-
dictable input requests, model architectures, and parallelism
methods, making it difficult to achieve optimal inter-server
communication through static NIC load balancing strategies.

To fill this gap, we ponder a fundamental question: can arbi-
trary ML workloads effectively leverage all available RDMA
NICs for data transmission, aggregating links over multiple
NICs as a "FuseLink" for inter-server communication? If so,
we could significantly improve GPU communication band-
width, surpassing the limitations of static NIC binding, and
achieve optimal NIC utilization in dynamic-traffic ML tasks,
without requiring adjustments to parallelism strategies or mod-
ifications to application code.

We build FuseLink, a GPU communication framework that
achieves optimal NIC utilization for distributed machine learn-
ing by enabling GPUs to flexibly transmit data through mul-
tiple NICs. Figure 1a shows a typical GPU server equipped
with multiple GPUs and RDMA NICs, with each RDMA NIC
statically bound to one GPU through PCIe switches (bridges).
In contrast, Figure 1b illustrates FuseLink, which disaggre-
gates the network resources of the inter-server network and
enables flexible NIC utilization.

FuseLink’s key idea is to integrate high-speed intra-server
links as critical extensions of the inter-server network. Exist-
ing GPU communication frameworks, such as NCCL [45],
leverages NVLink to improve throughput on NICs with subop-
timal PCIe paths. However, these methods remains static to a
specific NIC, lacking of abilities to dynamically balance NIC
workloads or aggregating bandwidths. This is inherently lim-
ited by the incompatibility of intra- and inter-server networks,
preventing access through NICs and NVLinks directly.

Our insight is that intra-server network can be seam-
lessly integrated to inter-server network by scheduling NIC
workload and efficiently configure traffic relaying via intra-
server connections. Additionally, we exploit characteristics
of ML applications that they typically have a limited num-
bers of inter-server connections and send large messages in
chunks [26, 32, 41, 42, 54]. These characteristics allows for
efficient scheduling of traffic across NICs with runtime intra-
server traffic relaying. As a result, FuseLink effectively lever-
ages multiple NICs, aggregating multi-NIC bandwidths and
significantly improving overall NIC utilization.

We build FuseLink on Nvidia platform with the following
design goals:
Maximizing multi-NIC efficiency. When transmitting data
from a GPU through multiple NICs, a key challenge is that
multi-NIC transmission is bounded by PCIe bandwidth and
PCIe topology that lacks direct connections between the GPU

and NICs. We refer these NICs as indirect NICs. FuseLink en-
ables efficient multi-NIC transmission by exploiting NVLink
for data relaying on both sender and receiver sides.
Avoiding contention and interruption. Utilizing relay GPUs
and multiple NICs should not interrupt or slow down ongoing
computation and communication tasks by consuming extra
memory and bandwidth resources. FuseLink avoids such in-
terruption by employing priority-based memory management
and network requests scheduling.
Readily deployable. FuseLink is designed to work with exist-
ing hardware and ML frameworks commonly found in GPU
clusters, which allow benefiting from FuseLink without mod-
ifying ML applications. We implement FuseLink on top of
RDMA primitives as an independent networking layer to re-
place the default networking system, and integrate FuseLink
into NCCL [45], allowing to use FuseLink seamlessly.

We evaluate FuseLink on Nvidia GPUs with eight-lane
NVLinks and eight 400Gbps NICs for inter-server communi-
cation. Our evaluation shows that FuseLink significantly im-
proves inter-server GPU communication bandwidth, achiev-
ing 212GBps between two inter-server GPUs, surpassing
the eight-lane NVLinks bandwidth. End-to-end evaluations
show that FuseLink effectively accelerates ML tasks with
traffic imbalance, including LLM serving task time-to-first-
token (TTFT 2) by 1.04-2.73→, MoE training by 1.3→, and
DLRM training by 1.2→.

This paper makes the following key contributions:

• We design FuseLink that boosts inter-server GPU com-
munication over multiple NICs by integrating high-speed
intra-server GPU connections (e.g., NVLinks).

• We integrate FuseLink into NCCL, enabling ML appli-
cations to benefit from it seamlessly.

• FuseLink effectively improves inter-server GPU band-
width and ML tasks efficiency under imbalanced traffic.

2 Background

High-speed interconnect is essential to facilitate large scale
machine learning. With the growing model sizes and ex-
panding dataset volumes [16, 59, 60], real-world ML appli-
cations have been typically deployed in distributed environ-
ments [54, 56, 68], incurring large communication overhead
and thus demanding high-bandwidth networks.

There have been substantial efforts on improving GPU
communication bandwidth, including dedicated intra-server
GPU connections and inter-server network. Industrial prac-
tices have been developing fast dedicated GPU interconnect
as an integral part in ML clusters, providing Tbps network

2Inter-server communication impacts either time-to-the-first token (TTFT)
or time-to-the-second-token (TTST), depending on when the prompt cache is
transmitted to the decode phase. Here we transmit the cache before generating
the first token, which affects TTFT.

92 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ML Tasks Communication Pattern | Cause NIC util. Comm. ratiovia direct NICs Concurrent transmission Same traffic volume

Distributed LLM Serving ↭ ✁ | stochastic task arrival ✁ | varying requests sizes 13%-53% 11%-82%
Expert-parallel MoE ↭ ✁ | async. transmission ✁ | different token batches 29%-65% 15%-42%
DLRM ↭ ↭ ✁ | different embeddings 59%-82% 28%-55%

Table 1: Dynamic-traffic ML tasks with communication patterns, ↭(✁) marks satisfied (unsatisfied) patterns

(a) Avg. NIC util. and comm. cost (b) Model serving (c) Expert parallelism (d) DLRM

Figure 2: Traffic imbalance and communication cost in ML tasks

between GPUs. For example, Nvidia builds NVLink and
NVSwitch [46] to connect near-range GPUs; Google designs
dedicated inter-chip-interconnect (ICI) for TPU groups [20].
Inter-server network [27], however, has relatively lower band-
width on a single NIC than intra-server network. Therefore,
GPU clusters typically stack multiple NICs within each server
to satisfy inter-server bandwidth demand of GPUs [43]. The
common configuration of NICs is to have the same number
of NICs as GPUs within a server and install each NIC on the
PCIe slot with direct access to the corresponding GPU slot.
This ensures each GPU can get the full bandwidth of its NIC.

Despite the efforts of improving inter-server bandwidth,
existing systems fail to fully utilize inter-server bandwidth for
ML tasks with dynamic traffic because of the static binding
of GPU traffic and NICs that causes low NIC utilization. The
dynamic traffic is intrinsic to widely adopted ML tasks, includ-
ing model serving [33, 37, 69], MoE models [15, 18, 55], and
embedding transmission in recommendation models [10, 25].
Moreover, the NIC load imbalance is more pronounced across
large GPU interconnect domains such as the NVL72 [3] sys-
tem, where 72 GPUs and NICs are connected with NVLink
and RDMA. We analyze the root cause by investigating ML
tasks with dynamic communication patterns.

2.1 Deficiency in Dynamic-traffic ML

We test typical ML tasks with dynamic traffic shown in Ta-
ble 1. Our tests are conducted on servers each with eight
Hopper GPUs connected via eight-lane NVLink and eight
400Gbps NICs for inter-server network. GPU traffic is trans-
mitted via direct NICs to maximize NIC throughput. Our met-
rics are NIC utilizations and the ratio of communication in ML
tasks. We estimate NIC utilizations by the speed gap between
static NIC binding and the ideal situation where GPUs can

use all available NICs for communication. Figure 2a shows
the average NIC utilizations and communication ratios in total
costs, together with the estimated ideal utilization where we
exploit all NICs to accelerate inter-server data transmission.

Disaggregated LLM serving. We test typical disaggregated
LLM serving cases where model serving is split into prefill
phase and decode phase [47, 50, 69], with processed requests
sent from prefill phase to decode phase. We feed the input re-
quests from public traces [5] randomly and record NIC utiliza-
tions when transmitting requests to decode stages. The results
shows only 13%-53% of NIC utilization when transmitting
data between phases, because serving traffic is stochastic, de-
pending on task arrival times and request lengths, with traffic
volumes ranging from hundreds of MBs to GBs. Even with
advanced optimization tricks that overlap communication and
computation [47, 50], we cannot fully utilize NICs because
requests vary across GPU workers. Figure 2b depicts the
recorded four NIC speeds during model serving, which shows
idleness of some NICs while other NICs are busy.

MoE training. We test MoE model [18, 55] training on Mix-
tral 8→7B model with expert parallelism (EP) degree of eight
and tensor parallel degree of four. We record NIC utilizations
when GPU workers transmit tokens to peer workers with
the activated experts. NIC utilization shows 29%-65%, with
communication taking 28%-55% of the total cost. The root
causes are asynchronized inter-server GPU communication
and different token batches of experts during MoE training.
Figure 2c shows the traffic map between expert models. EP
training allocates expert models to GPU workers, with each
worker training a subset of experts. The imbalanced traffic
persists even with equal model partitions because expert lay-
ers are sparsely activated for each input token based on the
output of gate layers. Since data samples are routed to differ-
ent experts, GPU workers need to dispatch data to and collect

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 93

CPU

Switch

NIC GPU

CPU

Switch

NIC

UPI

GPU

mem mem

via PCIe-bridge 49.3GBps via CPU mem 23.7GBps
via UPI 12.0GBps

Figure 3: Conceptual intra-server PCIe topology with NIC
bandwidth on different PCIe paths

data from peer workers, which leads to imbalanced all-to-all
traffic across NICs. With different traffic volumes among ex-
perts, static binding of NICs and GPUs fails to fully utilize
NICs bandwidth when all-to-all communication is bounded
by the GPU pair with the largest traffic volume.
DLRM We test DeepFM [22], a deep learning based recom-
mendation model with Avazu [61] dataset. DLRM [10, 25]
consists of dense models and large lookup tables that store
semantic embedding vectors of objects. In each training it-
eration, GPU workers fetch embeddings and push gradients
from/to the server with the embedding table if they are not
cached locally and train dense models with data parallelism.
Embedding transmission volumes vary across workers, lead-
ing to different traffic volumes. Our results show that embed-
ding transmissions achieve 59%-82% NIC utilization, and
take up to 55% of the total cost. Figure 2d shows the imbal-
anced traffic distribution among eight GPU workers which
causes performance to be bounded by the GPU worker with
the largest embedding transmission.

2.2 Opportunities

Leveraging idle NICs. By analyzing dynamic-traffic ML
tasks in Figure 2, we conclude that static NIC binding is not
well-suited for such tasks. This is because achieving optimal
NIC utilization with static NIC binding requires transmis-
sion through direct NICs, concurrent transmission, and equal
traffic volumes. Without these conditions, communication per-
formance is limited by tasks bound to specific NICs, while
other NICs remain idle. This idle NIC capacity can instead
be exploited to accelerate communication by dynamically
scheduling traffic to idle NICs.

Multi-NIC communication is non-trivial because it does not
improve inter-server bandwidth with only PCIe connections.
On one hand, the total bandwidth is limited when all NICs
access through the single PCIe interface of sender GPU. On
the other hand, some NICs are indirectly connected with the
sender GPU, with data traversing through PCIe root complex
or even across NUMA, leading to suboptimal NIC throughput.
With NVLink and imbalanced traffic in ML tasks, we can
significantly improve efficiency on multi-NIC transmission.
Dynamic NVLink routing to bypass PCIe. Existing GPU
communication frameworks, such as NCCL [45], leverage
NVLink to bypass suboptimal PCIe paths when transmit-

control path
via shmem data path relay buffer

CPU NICs
GPU0 Mem

GPU1 Mem

GPU2 Mem

GPU3 Mem

GPU Workers

W1

W2

W3

W0

Buffers

N
et

 O
p.

 Q
ue

ue
s

Scheduler QPsmonitor NIC (4.3)route data to relays(4.1, 4.2)
post to
idle NIC

via NVLink

Figure 4: FuseLink architecture in a GPU server with four
parallel GPU workers and four NICs. W0 is using both NIC
0 and NIC 1 for inter-server communication when W1 is not
sending any traffic. W0 sending buffers are mapped to GPU0
and GPU1 for efficient data transmission

ting data through indirect NICs. However, they focus only
on optimizing a single NIC, leaving other NICs restricted
to suboptimal PCIe paths. This limitation prevents efficient
utilization of multiple NICs for high-performance data trans-
mission. Figure 3 presents the NIC speeds across different
paths. The bandwidth of inter-server GPU communication is
constrained by the PCIe interface and topology, particularly
when using indirect NICs [30], which require data to traverse
suboptimal paths. To address this, we enable dynamic traffic
routing to peer GPUs via NVLink, allowing the efficient ag-
gregation of multiple NICs’ bandwidth for inter-server GPU
communication.

3 FuseLink Overview

FuseLink achieves multi-NIC communication by scheduling
worker’s traffic to multiple NICs dynamically with awareness
of NIC load status, instead of statically binding the traffic to
specific NICs. To effectively leverage indirect NICs, FuseLink
routes traffic via intra-server connection to optimal GPUs for
NIC access. The primary design goal of FuseLink is to achieve
efficient multi-NIC transmission while minimizing contention
risks, and is compatible with existing ML infrastructures. Fig-
ure 4 shows FuseLink architecture on sender side with an
example workflow.

FuseLink initializes with inter-server connection setup.
FuseLink explores the intra-server topology and establishes
RDMA connections. During connection setup, FuseLink iden-
tifies available NICs for inter-server communication. Based
on the topology, FuseLink selects the optimal data path for
each NIC and GPU. If a NIC is directly connected to the GPU
via a PCIe bridge or PCIe switch, it uses this direct path, as
the NIC can access the GPU with full bandwidth. Otherwise,

94 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

FuseLink selects a router GPU for relaying data to the NIC.
In Figure 4, GPU1 is the router when GPU0 sends via NIC1.

Inter-server GPU communication starts with receivers issu-
ing credits, which are data structures containing necessary re-
sources for initiating RDMA. These resources include receiv-
ing memory regions and requested data sizes. Crucially, the
credits contain idle NICs information, derived from FuseLink
actively monitoring NIC receiving load status. This allows
senders to select the suitable NIC for sending data. Credits
are common in RDMA-enabled applications [17, 28, 45, 62]
because of its bypassing feature.

On sender side, FuseLink intercepts sending requests and
waits for credits from receivers. At the same time, FuseLink
monitors NIC sending load status. When credits arrive,
FuseLink considers both sending NIC load status and receiv-
ing load status to select optimal NICs for data transmission.
Moreover, FuseLink leverages intra-server GPU connection to
route traffic efficiently to NICs. For instance, Figure 4 shows
data routing through NVLink from GPU0 to GPU1 and sent
through NIC1.

FuseLink gets notified when data arrives on receivers. Note
that the data may be transmitted to a router GPU rather than
the receiver GPU, because the sender may select a receiver
NIC that has an indirect connection to receiver GPU. In this
case, we stage receiving data on a router GPU first to ensure
transmission efficiency. It then routes traffic via intra-server
connection to receiver GPUs if needed.

Compared to existing GPU communication frameworks,
FuseLink introduces several key advancements.

• Disaggregated network resources. Instead of operating
on RDMA connections directly, FuseLink introduces
an abstraction layer that unifies both intra-server and
inter-server connection. This design enables efficient
and flexible NIC utilization.

• Dynamic NIC utilization. FuseLink monitors NIC sta-
tus in real-time rather than statically bind traffic to spe-
cific NICs. This approach allows to detect idle NICs and
dynamically assign traffic to them, significantly improv-
ing overall bandwidth utilization.

• Traffic routing with high-bandwidth GPU links. In-
stead of statically binding traffic to NICs or interme-
diate GPUs [1, 44, 45], FuseLink fully leverage high-
bandwidth GPU links for traffic routing, thereby bypass-
ing PCIe constrains in traditional interconnects and en-
hancing communication efficiency.

3.1 Challenges

FuseLink supports multi-NIC transmission by allowing inter-
server GPUs to dynamically schedule traffic to NICs. How-
ever, there presents several technical challenges:

Design Inter-server BW(GBps) Speedup

Baseline 49.27 1.0
Efficient relaying §4.1 78.39 1.59
Eliminate Interruption §4.2 76.37 1.55
Reduce NIC contention §4.3 178.59 3.62
Scheduling Efficiently §4.4 212.35 4.31

Table 2: Designs and achieved speedup over baseline

Relaying overhead. (§4.1) FuseLink introduces flexible intra-
server traffic routing across GPUs to address the bandwidth
limitations when transmitting through multiple NICs. How-
ever, GPUs are not inherently optimized for relaying data to
NICs. Instead, both GPUs and intra-server connections are
optimized for memory I/O between devices [24, 30], which is
incompatible with PCIe-based NICs. This gap enforces fre-
quent device synchronizations during network transmission,
significantly slowing down the data path. For instance, when
a GPU acts as a relay to transfer data from other GPUs to
NICs, the data must be fully available on the relay GPU before
NICs can access it. This results in frequent synchronizations
between the relay GPU and sender GPUs. Consequently, the
NIC throughput has minor improvements compared to the
throughput in Figure 3. We address this challenge by actively
planning relay data paths by memory remapping, thereby effi-
ciently relaying data via GPUs for multi-NIC transmission.

Interruption and contention risks. (§4.2,§4.3) Maintaining
performance isolation is challenging when utilizing NICs and
GPU memory. These resources may contend for NIC band-
width during data transmission, potentially disrupting tasks by
draining GPU memory. Consequently, inter-server bandwidth
is limited because of NIC contention, as listed in Table 2.
The primary cause of the contention is FuseLink’s strategy
to schedule traffic to idle NICs when peer workers are not
engaged in communication tasks. However, NIC idleness are
temporal in dynamic-traffic ML tasks [10, 18, 47]. When peer
workers initiate new communications, outstanding traffic may
still in transmission, scheduled by FuseLink during periods
idleness. We address this challenge by prioritizing ongoing
tasks on relay GPUs and monitoring network resource usage
with priority-based scheduling. This approach enables senders
to identify idle NICs and eliminate interruption risks.

Scheduling overhead. (§4.4) Dynamically scheduling traf-
fic to NICs is inherently complex, considering requirements
to mitigate contention risks and to avoid traffic interference
and interruption, making the reduction of control overhead
a significant challenge. Existing works on communication
scheduling focus mainly on task-level scheduling [51, 64, 65]
to maximize network resource utilization. However, they fail
to identify idle NIC resources and schedule communication
efficiently. We address this issue by implementing an effi-
cient traffic monitoring and scheduling strategy that balances
monitoring accuracy with performance.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 95

process

buffer

GPU0

GPU1

net buffer

relay

process

Virtual Physical

Memory
Mapping

Old
Mapping
Write via
NVLink

CPUGPU0

net buffer

process

GPU1

relay

memcpy

Copy via
NVLink

device
interaction

ready

Figure 5: Candidate intra-server traffic redirection methods
D1 (left) and D2 (right) using two GPUs as an example. The
network buffer is allocated on GPU0. D1 remaps network
buffer to relay GPU and GPU threads fill relay buffer directly.
D2 initiates asynchronized memory copy between GPUs from
CPU side after network buffer is ready

4 FuseLink Design

We illustrate FuseLink design with a focus on solving the
aforementioned challenges, achieving high NIC utilization
while without interrupting peer GPUs.

4.1 Efficient Intra-server Relaying

Efficiently relaying data across GPUs to get high bandwidth
on indirect NICs is difficult mainly because GPU interconnect
and inter-server network are incompatible. This incompatibil-
ity enforces memory copy and device synchronizations before
sending with NICs, which stalls network transmission and
prolongs message latency.

To address this challenge, our insight is to exploit the ex-
isting memory I/O on network buffers during inter-server
communication and redirect the traffic via memory remap-
ping. FuseLink achieves efficient intra-server traffic relay-
ing without modifying existing ML frameworks by taking
advantages of the existing virtual address systems [6]. The
system manages GPU memories in a unified virtual memory
address space, which allows to map virtual memory addresses
to arbitrary physical memories. With this feature, FuseLink
decouples network buffers with the physical memories and
remaps them to buffers on relay GPUs, so that traffic is redi-
rected through intra-server connections via memory I/O when
applications fill the network buffers.

To show the rationale of FuseLink relaying with remap-
ping, we explore the design space by inspecting inter-server
communication in two steps. 1 The GPU worker fills net-
work buffer, and 2 The GPU notifies CPU to initiate RDMA
transmission. To configure the data path without code modifi-
cation, we have the following candidate solutions. D1: modify
step 1 so that the GPU writes data to remapped buffers on
relay GPUs. D2: modify step 2 so that the CPU copies data
to relay GPUs then RDMA. D3: GPU threads write data to
buffers mapped to host memory. D4: CPU initiates memory
copy to host memory.

Figure 6: Intra-server relay bandwidth and indirect NIC
throughput. D1 has less intra-server bandwidth than D2, but
has the highest indirect NIC throughput

Among four candidate relaying methods, D3 and D4
achieve the same bandwidth as PCIe shown in Figure 3, thus
limited by PCIe speed and cannot improve relaying efficiency.
D1 and D2, however, have pros and cons and cannot be easily
compared. As shown in Figure 5. D2 has high intra-server
bandwidth when performing memory copy in a batch asyn-
chronously, while D1 enforces synchronized memory load
and store and involves memory remapping with extra over-
head. However, D1 has only one copy step to relay GPUs,
achieving higher data path efficiency and lower message la-
tency. To this end, we set up performance benchmark to select
the optimal intra-server relay method.
Benchmark indirect NIC throughput. We test GPU com-
munication bandwidth through indirect NICs on servers with
multiple GPUs, eight-lane NVLinks, and 400Gbps NICs. The
theoretical bandwidth of eight-lane NVLinks is 200 GB/s.
The experiment is conducted by sending messages constantly
between two inter-server GPUs via indirect NICs. The traffic
is routed from the sender GPU to indirect NICs with relaying
methods D1-D4 respectively. We record intra-server traffic
relaying bandwidth and throughput on the indirect NIC under
different data chunk sizes. Figure 6 shows the intra-server
relaying bandwidth and indirect NIC throughput.

Among four relaying methods, D1 achieves the highest
throughput on the indirect NIC, compared to D2-D4. D3 and
D4 route data to host memory via PCIe, thus are limited by
PCIe bandwidth. In contrast, D1 and D2 exploit NVLink con-
nections, achieving much higher relaying bandwidth. When
comparing D1 and D2, we observed that D2 has higher intra-
server relaying throughput, because CPU-initiated memory
copy between devices batches memory copy, which achieves
higher throughput than GPU-initiated memory copy.

However, D1 achieves the highest NIC throughput. The
reason is that D1 has the most efficient data path between the
GPU and indirect NICs through memory remapping, which
brings the following benefits:
1 High indirect NIC throughput: D1 remaps network buffer

to peer GPUs, so that relaying is done when GPUs fill send-

96 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 7: Performance of long flow and short flow under
direct NIC communication, traffic spraying, and FuseLink
interruption-free relaying

ing buffer. D2 introduces additional data copy across GPUs,
limiting the throughput over indirect NICs.
2 Low message latency over indirect NICs: D1 achieves

lower message latency than D2 over indirect NICs without
additional CPU involvement. Unlike D2 CPU-initiated re-
lay copy, where the GPU must synchronize with CPU to
signal data readiness with extra delay, D1 eliminates such
synchronization overhead. Furthermore, D1 masks the extra
intra-server relaying latency by overlapping it with pipelined
intra- and inter-server communication, effectively mitigating
latency penalties for small-to-medium messages.

With benchmarking, we use remapped network buffer for
efficiently relaying traffic to indirect NICs because of three
key performance advantages: First, it has no duplicate data
copy of the traffic, compared to CPU-initiated data copy be-
tween GPUs. Second, it has less device synchronizations
because GPU threads can write data directly to peer GPUs.
Third, it avoids CPU involvement, which saves the latency in
calling memory copy functions.

4.2 Interruption-free Relaying

While intra-server relaying brings significant benefits in NIC
throughput, it brings risk of interrupting peer GPUs. Specif-
ically, multi-NIC communication may take peer GPU band-
width resources, and the memory consumption on relay GPUs
may drain peer GPU memories, causing unexpected out-of-
memory (OOM) error.
Relaying without interrupting communication. FuseLink
accelerates GPU communication only during idleness of the
indirect NICs. Although equally spraying traffic to all NICs
within the server achieves optimal NIC utilization, it may
disturb or even interrupt peer GPU communication over direct
NICs. FuseLink strikes a balance between NIC utilization and
fairness. This ensures that peer GPU communication tasks
are not interrupted by traffic relaying.

We compare FuseLink interruption-free design against traf-
fic spraying in Figure 7, where two GPUs send data through
two NICs respectively. The first GPU has a long inter-server

flow, while the second GPU is the victim, which has a rel-
atively short flow and is constantly interrupted by the first
GPU. In contrast, FuseLink exploits the indirect NIC only
when the second GPU does not have inter-server traffic, pre-
venting unfairness problem. FuseLink controls the traffic vol-
ume during intra-server relaying to avoid interference with
GPUs engaged in intra-server communication. In practice,
intra-server GPU communication, such as aggregation in ten-
sor parallelism, overlaps with inter-server communication via
NICs. To ensure isolation, FuseLink marks NICs as busy dur-
ing TP communication and relaying, preventing contention
with intra-server communication and other relaying traffic.
Relaying without interrupting memory allocation. If mem-
ory requirements of the running tasks on relay GPUs are
known, FuseLink can easily eliminate OOM risks by limiting
the total sizes of relay memories. Unfortunately, accurately
calculating the memory footprint of a running task on GPUs
remains challenging, and existing works do not have precise
estimations [19], leaving risks of causing OOM due to relay
buffer allocations. To mitigate this problem, FuseLink pro-
vides a best-effort solution that combines both memory usage
constraints and adaptive approaches.

First, FuseLink sets a configurable upper limit for relay
memory usage. If the relay memory on a GPU exceeds the
limit, FuseLink will stop allocating more relay memories until
memories from existing connections are released. Although
this limitation cannot fully eliminate OOM risks, it allows
FuseLink to adjust resource allocation according to user de-
mands. For example, one may set high memory limitations
to encourage FuseLink to take more multi-NIC transmissions
with GPU relaying, thereby aggregating higher bandwidth
with multiple NICs.

Second, FuseLink allows for prioritizing memory demands
of running tasks on relay GPUs by removing relay memories
when releasing can help satisfy memory allocation of the run-
ning tasks on relay GPUs. Specifically, when memory drains,
FuseLink first checks whether releasing relay memories will
free up enough space. If so, FuseLink releases the relay mem-
ory to give in to ongoing tasks. Otherwise, it means the task
will encounter an OOM error regardless of the relay memory.

4.3 NIC Contention Mitigation

We next discuss the challenges on how to efficiently exploit
idle NICs while avoiding GPU workers contending for NIC
resources. Doing so is difficult mainly because of the un-
predictable and imbalanced traffic in ML applications with
dynamic communication patterns.

FuseLink mitigates NIC contention by assigning varying
priorities to traffic from different GPUs during NIC schedul-
ing. FuseLink monitors NIC load status and marks NIC as
busy or idle, indicating whether NICs are working for high-
priority GPUs. When a GPU engages in communication, it is
granted the highest priority on its direct NIC, preventing peer

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 97

W0 W1

NICs

W2 W3

GPU 1GPU 0

GPU 2 GPU 3

W0 W1

NICs

W3

GPU 1

GPU 3

GPU 0

schedule to direct NIC schedule to idle NIC

GPU 2

W2

0 1

2 3

0 1

2 3

W0 W1

NICs

W2 W3

GPU 1GPU 0

GPU 2 GPU 3

0 1

2 3

post credit to sender

credit recv NIC idle: 2 3 credit recv NIC idle: 3 credit recv NIC idle: 3

(a) Scheduling for exploiting idle NICs

W0 W1

NICs

W2 W3

GPU 0

GPU 2

0 1

2 3

adjust sender routing

credit recv NIC idle: None

GPU 3

GPU 1

W0 W1

NICs

W2 W3

GPU 0

GPU 2

schedule to direct NIC

0 1

2 3

credit recv NIC idle: None

GPU 1

GPU 3

W0 W1

NICs

W3

GPU 1

GPU 3

GPU 0

identify contention

GPU 2

W2

0 1

2 3

credit recv NIC idle: None

(b) Scheduling for preventing contention

Figure 8: Traffic scheduling illustration. We emit ordinary elements in credits, such as memory regions, for simplicity

GPUs from using that NIC. Furthermore, FuseLink limits
the outstanding traffic scheduled to idle NICs, thereby re-
ducing potential contention when high-priority GPUs initiate
communication. Our approach is based on the need for GPU
workers to fully utilize their direct NICs in a 1:1 GPU-to-NIC
configuration.

During communication, receivers encode idle NICs in cred-
its and post to senders, who decide which NIC to transmit data
based on NIC status of both sides. This design can be decom-
posed into two modules: 1) §4.3.1 FuseLink monitors NIC
load status by inspecting completed network operations of
high-priority GPUs. 2) §4.3.2 FuseLink aggregates idle NICs
on both sides to guide traffic scheduling, with intra-server
routing configured via memory remapping.

4.3.1 Worker-aware NIC Monitoring

FuseLink marks the status of NICs as idle or busy by monitor-
ing the network operations posted by ML workers within the
server. ML workers post network operations, such as send and
receive, to FuseLink through first-in-first-out (FIFO) queues,
instead of operating on RDMA connections directly. FuseLink
collects network operations and post work requests to NICs.
Then FuseLink polls RDMA completion queues to get fin-
ished operations.

The straightforward solution to decide whether a NIC is
idle is by checking NIC TX and RX counters. However, read-
ing counters cannot tell which worker is sending or receiving
data, which hinders contention prevention when we have mul-
tiple workers transmitting data through the same NIC. Instead,
FuseLink monitors NICs workload from the work requests on
RDMA connections. Note that we configure NIC status to be
decided by workers that have the highest priorities on the NIC.
The rationale is that we aim to isolate traffic and guarantee
the network performance of the high-priority worker.

FuseLink identifies idle NICs by periodically checking new
completions of network operations posted by high-priority
workers. If no new completion since last polling, FuseLink

will mark the NIC as idle. As illustrated in Figure 8a, NIC1 is
idle because W1 is not sending data to W3, and NIC0 is busy
since W0 is sending to W2. Once found idle NICs, FuseLink
schedules traffic from other workers to idle NICs. If a new
completion is found, it means there exists new traffic since
last time, and FuseLink will mark the NIC as busy. In this
case, we will not schedule traffic to the busy NIC. FuseLink
schedules traffic of low-priority workers to their direct NICs
for performance isolation.

The rationale of marking NIC status as idle or busy is that
ML applications typically have large traffic that can fully oc-
cupy NICs when they have communication tasks [34]. There-
fore, we allow GPU workers to fully occupy their direct NICs.
If GPU workers share direct NICs, FuseLink does not isolate
traffic between these workers.

4.3.2 Load-aware Scheduling

We introduce load-aware traffic scheduling in three steps:
1) aggregating NIC load status on the sender and receiver
side, 2) selecting NICs and initiating data transmission, and
3) performing intra-server traffic routing inside receivers via
memory remapping.
Aggregating NIC load status. FuseLink orchestrates commu-
nication by receivers giving credits to senders and FuseLink
configures credits to include NIC load status on receivers.
Posting credit is necessary in RDMA communication because
of the nature of RDMA that bypasses remote side processors,
making senders unaware of receiver resources. RDMA com-
munication with credits is common in existing distributed ML
frameworks [1, 45]. After getting credits, senders know NIC
load status on both sides.
Selecting the NIC for sending. The NIC selection is based on
NIC status and priorities of the worker on NICs. FuseLink se-
lects the direct NIC of worker if it is idle. Otherwise, FuseLink
selects an idle indirect NIC if exists. Note that we limit the
number of outstanding operations posted to indirect NICs to
reduce contention risks. Without limitation, we may post too

98 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

many requests to indirect NICs and cause severe contention
when high-priority workers start communicating. If no idle
NICs found, FuseLink selects the direct NIC.
Routing traffic on receivers. FuseLink writes data to receiver
memory that resides on the GPU with direct PCIe connection
to ensure transmission efficiency. However, the GPU could be
different from the worker GPU that requests the receiving. In
this case, FuseLink maps the receiving address to the memory
where the received data locates. On sender side, the data may
be already on relay buffers when getting credits. FuseLink
remaps relay memory before the next sending operation, with
the cost of one suboptimal sending.

We demonstrate the traffic scheduling with an example, as
shown in Figure 8a. FuseLink first identifies NIC idleness
when W1 is not posting any traffic. Then, for network opera-
tions posted by W0, FuseLink schedules them to NIC1 by al-
locating credits that indicate sending through NIC1. FuseLink
remaps receiving memory on GPU1 to enable efficient NIC
access. On sender side, FuseLink gets credits and posts send-
ing operations to NIC1. Because the data is already on GPU0,
the data is sent through suboptimal data path. After sending
finished, FuseLink remaps relay buffers to GPU1 so that the
subsequent sending is efficient.

When traffic contention happens on NIC1, as shown in
Figure 8b, FuseLink detects contention when W1 is posting
network operations to NIC1 and gets completions. In this
case, FuseLink performs similar steps as exploiting idle NICs.
FuseLink schedules subsequent network operations back to
NIC0, together with router memory remapped to optimize
data path.

4.4 Scheduling with Efficiency

FuseLink schedules communication to multiple NICs when
detecting idle NICs in the server. Our design of NIC moni-
toring and traffic scheduling do not enforce strict idle NIC
utilization or precise contention prevention, which is diffi-
cult to achieve due to control plane efficiency requirements.
Instead, we have the following tradeoffs for control plane
efficiency:

First, FuseLink marks NIC load status based on new com-
pletions of operations posted by GPU workers, which is later
than transmission start time. The delayed marking is more
efficient than detecting whether a NIC is sending traffic for a
GPU worker. The delay is acceptable because existing frame-
works, such as NCCL, divide large messages into chunks
and send in pipeline. In NCCL, the default configuration is
512KB, which makes the delay marking about 10us under
400Gbps network.

Second, FuseLink allows bounded contention over limited
number of network operations. In the worst case, FuseLink
schedules a batch of operations to an idle indirect NIC and the
peer worker starts communicating immediately. This ensures
the scalability of FuseLink traffic scheduling in a large GPU

cluster because FuseLink only needs to gather NIC utiliza-
tion information of peer nodes during communication. The
scheduling overhead is determined by the number of NICs
and concurrent connections, which are limited by hardware
configurations and ML applications.

Third, FuseLink allows bounded suboptimal transmission
through indirect NICs, because the NICs selected may have
suboptimal data path to the router GPUs, as illustrated in Fig-
ure 8b during receiver scheduling. We bound the suboptimal
transmission by sender remapping, with the assumption that
the next sending operations have optimal data path. Our de-
sign is based on the ML traffic pattern that NICs load status
do not change frequently, as ML computation and communi-
cation last for long time intervals.

After optimizations, control plane overhead mainly comes
from the following components:
NIC monitoring overhead. Before issuing operations,
FuseLink checks NIC status and decides how to route the
traffic. To reduce the monitoring overhead, FuseLink checks
status of NICs after issuing a batch of network operations. For
example, FuseLink checks NICs status after scheduling eight
network operations. Subsequent operations are scheduled ac-
cording to the NIC status after the last batch. The coarse
grained NIC monitoring brings acceptable scheduling over-
head because ML applications usually have large message
sizes and are bounded by bandwidth.
Traffic routing overhead. When NIC encounters idleness
or contention, FuseLink remaps the receiver relay buffer and
switches the connection by posting credits to senders. The
overhead consists of checking the NIC status, fetching new
connection, and remapping relay buffers. Traffic rerouting
happens when NIC status changes. In machine learning, NIC
usage displays typical on-off patterns. Thus, NIC status will
not change frequently, bringing limited traffic routing over-
head.

5 Implementation

We implement FuseLink as an independent networking mod-
ule to replace the default Infiniband networking in NCCL,
a widely-used GPU communication library, so that ML ap-
plications can use FuseLink without modifying codes. We
incorporate FuseLink in NCCL by intercepting networking
layer functions called by NCCL proxy threads that originally
post RDMA work requests to NICs. After loading the plu-
gin, NCCL proxy threads interacts with FuseLink for GPU
communication, instead of operating on NICs directly. Our
implementation has about 3000 lines of code in C++.

In the default implementation, NCCL sets up worker
threads as proxies to communicate with peer GPUs through
inter-server network. Proxy threads build RDMA connections
and post work requests to NICs. ML processes send data by
writing to network buffers handled by proxy threads. When

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 99

receiving data, ML processes indicate receiving buffers and
get notified from proxy threads when the data is ready.

We intercept proxy thread function calls to interact with
FuseLink, including connection establishment, network buffer
registration, and sending/receiving data.
Connection establishment. Instead of building raw RDMA
connections, we modify proxy threads by posting connection
request to FuseLink, which handles the request by setting
up connections through multiple NICs within the server. Af-
ter connection setup, proxy threads get connection ids that
are used to post sending and receiving operations. All net-
work operations are conducted by posting control messages
to FuseLink with the connection id.
Registering buffers. By default, NCCL registers buffers on
the specified device to enable RDMA NICs to access network
buffers. We modify proxy threads to expose network buffers to
FuseLink, which remaps buffers to relay GPUs and registers
network buffers on RDMA NIC. Since each buffer only needs
to be registered once in the NIC, remapping to relays brings
minor overhead. Note that FuseLink maps network buffers
back to original GPUs when NIC contention arises. Thus, we
register network buffers on relay GPUs and original GPUs to
avoid repeated registration. The registered memory regions
are selected based on the current GPU to which the network
buffer is mapped.
Sending & receiving. In NCCL, high-level communication
tasks, such as sending a large data block and collective com-
munication, are divided into data chunks.

On the sender side, the send function returns with an empty
handler if no new credit is received. After receiving valid
credits, NCCL sends with data in a ring slot and connection
specified in credits. If the ring slot buffer is on a GPU that
is not directly connected to the selected NIC, it means the
receiver has scheduled an indirect NIC for data transmission.
FuseLink marks the indirect NIC and remaps data to the buffer
on a relay GPU. Send function returns with a valid handler if
the data transfer to relay GPUs has started successfully. After
the data is ready on the relay buffer, the sender starts data
transfer to the remote side with RDMA.

On the receiver side, FuseLink collects NIC usage status
to identify idle NICs and contention NICs. For each chan-
nel, FuseLink assigns one NIC to process receiving requests
by giving credits to sender side specifying connections on
the NIC. FuseLink schedules traffic to connections on other
NICs by changing the RDMA Queue Pairs (QPs) and the
memory addresses in ring slots used to receive data, which is
transparent to applications.

6 Evaluation

We evaluate FuseLink capabilities in microbenchmarks and
ML applications. In microbenchmark, we answer the follow-
ing questions: 1) What is the maximum inter-server band-
width for a single GPU with FuseLink compared to the default

Figure 9: Average inter-server GPU bandwidth achieved by a
single GPU when using different numbers of NICs

Figure 10: Average scheduling overhead decomposed into
flushing data, changing NIC, and remapping

GPU-NIC binding? 2) What is the overhead of FuseLink in
traffic scheduling? 3) What are the performance benefits of
FuseLink on machine learning tasks with imbalanced traffic?
Evaluation setup. We conduct experiments on servers
equipped with Intel 8480C CPU, eight Nvidia Hopper GPUs,
and eight Connect-X7 400Gbps NICs for inter-server GPU
communication. Intra-server GPUs are connected through
eight-lane NVLinks and NVSwitches, delivering up to
200GB/s bandwidth for intra-server GPU communication.
Each NIC is connected directly with one GPU through PCIe
bridge, respectively. We deploy by running FuseLink sched-
uler as a daemon process and ML workers load FuseLink as
a NCCL plugin to replace the default IB network.
Baselines. We use NCCL with PXN enabled as the baseline
when performing inter-server GPU communication. NCCL
with PXN automatically pick up the best path for inter-server
GPU communication via both NVLink and PCIe, but is lim-
ited by statically bind traffic to paths and cannot support trans-
mitting data through NVLink on receivers.

6.1 Microbenchmark

Bandwidth improvement. We evaluate how FuseLink can
improve bandwidth when transmitting data between two inter-
server GPUs. We divide the whole sending data into 512K
messages, a common size for inter-server GPU communica-

100 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Controls Avg. cost(us)

post & pull ops 0.8-1.4
query NIC load 0.9-1.6
process send 2.8-3.5
process recv 4.9-5.6

Table 3: Network operation processing overheads in FuseLink

tion in NCCL, and post them to FuseLink controller. In the
baseline experiment, the traffic is statically bound to one NIC
for inter-server communication. By contrast, FuseLink sends
data through direct NICs and indirect NICs with GPU relays.
We change the maximum number of NICs used by FuseLink
and record the average bandwidth.

As shown in Figure 9, FuseLink achieves up to 212GBps
bandwidth with six NICs, compared to the default setting
with about 50GBps throughput, where GPUs communicate
through only one NIC. FuseLink gets higher bandwidth by
utilizing more NICs during inter-server communication. The
upper limitation depends on the bottleneck between GPUs
and NICs. If the NVLink bandwidth is larger than the sum of
bandwidths of indirect NICs, FuseLink can aggregate all NICs
bandwidth at maximum. Otherwise, the maximum bandwidth
is the sum of the direct NIC bandwidth and NVLink band-
width. In this experiment, FuseLink bandwidth stops scaling
because NVLink has reached the maximum throughput.
Scheduling overhead Compared to posting RDMA requests
to NICs directly, FuseLink incurs scheduling overhead during
monitoring NIC workload and determining the NIC to post
RDMA operations (§4.3). To improve scheduling efficiency,
we make tradeoff to allow bounded suboptimal scheduling
and sender data path (§4.4). We show that the scheduling
overhead is acceptable and the tradeoff will not harm the
overall performance. Table 3 shows the overhead of FuseLink
when processing RDMA operations and scheduling. NIC
monitoring and NIC selection are implemented using shared
memory, which brings 0.9-1.6us latency on a batch of network
operations. Relay remapping is called when optimizing the
data paths between NICs and GPUs, which brings around
95-193us latency in each remapping.

Figure 10 shows the scheduling overhead when FuseLink
changes NIC to prevent contention. Before changing NICs,
FuseLink flushes the network buffer, i.e., finish all network op-
erations on the buffer, and finally performs buffer remapping
to adjust intra-server traffic relaying. The total scheduling
overhead is minor compared to the communication time in
distributed machine learning.

6.2 End-to-End Evaluation

We demonstrate that FuseLink can effectively improve the
NIC utilization in imbalanced traffic ML tasks and bring
benefits to the overall performance.
Model serving. We test FuseLink performance in model serv-

#Instance Setting P50 P99

8 NIC Binding 684.54 ms 903.20 ms
FuseLink 308.48 ms 464.55 ms

4 NIC Binding 174.46 ms 297.49 ms
FuseLink 122.61 ms 259.73 ms

2 NIC Binding 98.09 ms 175.36 ms
FuseLink 81.97 ms 160.36 ms

Table 4: Model serving TTFT comparison under different
number of serving instances within a server

ing in disaggregated setting [47,69], where the serving process
is divided into a prefill phase and a decoding phase across
inter-server GPUs connected by NICs. We test OPT [67] mod-
els serving with 30B parameters under different tensor parallel
degrees. We consider model serving in mixed requests, where
batched user requests are fed to GPU groups for the prefill-
stage computation. The processed user requests are sent to
the decode-stage GPUs. The communication cost consists
of sending prefix cache and user requests cache. We record
the time-to-the-first-token (TTFT) as the performance metric,
which includes requests computation and inter-server com-
munication time.

Figure 11a- 11c shows the CDF graph of TTFT recorded
with different number of independent serving instances within
a server. For every deployed serving instance, we randomly
sample the serving prompt and feed to the prefill instances.
We sample request lengths from public traces [5] with prefix
and simulates with Poisson arrival rates. FuseLink shows
1.04-2.73→ speedup over the baseline with NIC binding,
where GPUs communicate only through the direct NICs. No-
tably, with smaller TP degrees and more instances per server,
FuseLink shows greater speedup compared to scenarios with
fewer instances and larger TP degrees, as the NIC exhibits
more dynamic traffic pattern under more instances within a
server. The performance improvement is attributed to two fac-
tors: First, FuseLink accelerates inter-stage data transmission,
reducing communication overhead during first token gener-
ation; Second, FuseLink improves serving throughput and
reduces the requests queueing time. Table 4 shows the TTFT
of 50th percentile and 99th percentile of different numbers of
serving instances within a server.
EP training. We test expert-parallel MoE training of Mixtral
8→22B model using tensor parallel degree as four and expert
parallel degree as eight. In this case, each server has two ex-
perts training in parallel. We record the time spent on training
iterations. Figure 12 shows the iteration times of the baseline
and FuseLink. FuseLink improves the training throughput
by 1.3→ compared to the baseline. We notice that FuseLink
brings less performance gain in later iterations, which can be
explained by the design of gate layers that try to achieve load
balance among experts [55], making the traffic across NICs
closer to balanced NIC load compared to earlier iterations.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 101

(a) Eight instances with TP=1 (b) Four instances with TP=2 (c) Two Instances with TP=4

Figure 11: FuseLink model serving performance under different TP degrees and number of serving instances

Figure 12: EP training times under NIC binding and FuseLink Figure 13: DLRM training iteration times under different
cache sizes (GB)

DLRM training. We test FuseLink performance in DLRM
training [13] model on Criteo advertisement dataset [4]. We
configure 32 GPU workers to train the model in data paral-
lelism and setup a dedicated server with large memories to
maintain the embedding table. In each training iteration, the
GPU workers first convert the categorical features in training
samples into embedding vectors in the table. If the embed-
ding cache does not have the required vector, the GPU work-
ers need to fetch the embedding from the embedding server
through NICs. Communication cost is mainly affected by the
embedding cache sizes and training batch sizes of each worker.
Limited cache sizes and large batch sizes tend to bring higher
embedding cache miss and more embedding transmission.
We set the training batch size as 1024 as suggested by [10].
Figure 13 shows the average iteration durations under differ-
ent cache sizes when using FuseLink and static traffic binding
to direct NICs. FuseLink can effectively reduce the training
iteration times by accelerating embedding transmissions.

7 Discussion and Limitations

We discuss the application scope of FuseLink and limitations
in existing ML infrastructures.
FuseLink in collective communication. FuseLink works
the best under traffic imbalance scenarios, which are com-
mon in point-to-point communication. The point-to-point
communication has become one of the major network costs
in distributed machine learning, including MoE and model

serving. In contrast, collective communication like ring all
reduce synchronize GPUs with uniform traffic pattern across
NICs [34], making them less suitable for FuseLink without
extra modifications. Applying FuseLink in collective com-
munication may require adjusting worker placements. For
example, co-locating multiple data parallel groups within a
server can produce imbalanced traffic across NICs in different
parallel groups. However, such optimizations would require
additional efforts to integrate with existing ML frameworks.
FuseLink in general GPU interconnections. FuseLink is
designed and implemented on Nvidia GPU with NVLink con-
nections, but is not limited by specific GPU devices, intercon-
nections, or GPU-NIC ratios. In essence, FuseLink unlocks
the capability of intra-server traffic routing and efficient multi-
path transmission during inter-server GPU communication.
FuseLink is powered by the ever-growing performance of
dedicated GPU connections that have become integral in ML
infrastructures. Industrial practices have deployed various of
GPU interconnect [20, 46, 58] in their GPU clusters, making
FuseLink widely applicable in today and future ML facili-
ties [35, 36].

FuseLink ensures its design generality by relying on stan-
dard communication primitives. Specifically, RDMA enables
NICs to access application memory from virtual address with
backend physical memory mapped to any virtual memory
on demand. We exploit this feature to enable RDMA NICs
to access remapped location without changing the applica-
tion network buffer address. We also take advantage of the
GPU memory addressing that enables peer-to-peer communi-

102 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

cation between GPUs, which is essential in dedicated GPU
connection to ensure efficient data transmission. The unified
addressing and standard RDMA primitives do not rely on
specific devices or GPU-NIC ratios. Therefore, FuseLink can
be applied in general machine learning servers, including
those with asymmetric GPU interconnects [8, 30] and other
GPU-NIC ratios.
Corner cases of FuseLink scheduling. Since FuseLink opti-
mizes scheduling efficiency with bounded contention, corner
cases may arise where one GPU sends a small chunk of data
through its direct NIC only when a peer GPU has just started
using the NIC. In this scenario, FuseLink will route other
GPU traffic to this idle NIC and then be preempted by the
GPU with higher priority, and subsequently start using the idle
NIC again in the next batch of sending. However, such cases
are rare in machine learning workloads, because they feature
large messages and relatively long time intervals between
communication phases. This leaves sufficient time intervals
for FuseLink to schedule traffic while maintaining relatively
stable NIC utilization, minimizing routing frequency.

8 Related Work

PCIe → NVLink (PXN). NCCL has introduced PXN [44],
an inter-server GPU communication mechanism that allows
senders to use intermediate GPUs for inter-server communi-
cation. Similar to FuseLink, PXN removes the bottleneck of
GPU-NIC connection that traverses through QPI/UPI, which
cannot deliver full bandwidth. PXN is designed to avoid cross-
rail traffic in rail-optimized GPU clusters because cross-rail
traffic has to be routed through spine switches, which risks
interfering with other flows in the network.

Despite the similarity of using intermediate GPUs,
FuseLink has three key differences compared to PXN. First,
PXN binds traffic to intermediate GPUs and statically copies
data to GPUs. This can only improve one NIC throughput,
yet others are in suboptimal PCIe connections. In contrast,
FuseLink dynamically integrates NVLink interconnect in the
network data path. Consequently, FuseLink can fully elimi-
nate the suboptimal PCIe data path on multiple NICs during
inter-server communication. Second, FuseLink identifies and
leverages idle NICs, while PXN is configured statically by
NCCL, given the system topology before running communica-
tion tasks. Finally, FuseLink achieves higher inter-server band-
width for GPU communication by utilizing multiple NICs,
while PXN is bounded by the single NIC bandwidth.
Multi-Path network protocols. Researchers have proposed
datacenter networking protocols that aim to improve network
resource utilization. For example, MP-TCP [63] and MP-
RDMA [38] are multi-path transport protocols designed to uti-
lize the rich path resources in datacenter networks; NetChan-
nel [12], a host network stack that disaggregates the dedicated
data path to improve utilization of host network resources.
These protocols and network systems focus on a similar prob-

lem that network resources, such as host data paths and net-
work paths, are not fully utilized because of dedicated re-
source assignments.

FuseLink differs from these works on the network re-
sources and methods for multiplexing. On one hand, existing
works try to multiplex network data paths with only host mem-
ories, while FuseLink mainly focuses on inter-server commu-
nication on GPU memories, which requires considering PCIe
bandwidth and topology. On the other hand, FuseLink exploits
dedicated intra-server GPU connections and integrates into
inter-server networking to enhance inter-server networking,
which is not explored in existing works.
Data path optimization. There have been efforts to improve
network resource utilization from host side by solving the
best data paths for inter-process communication. For exam-
ple, SocksDirect [31] improves inter-process communication
efficiency by implementing efficient communication primi-
tives and automatically schedules the best data path to carry
out data transmission, such as shared memory and RDMA.
ARK [24] accelerates GPU communication by implementing
an efficient DMA controller operated by GPUs, together with
a GPU-driven execution model to improve computational ef-
ficiency without interfering with networking. FuseLink has
similar methodologies that improve data path efficiency dur-
ing GPU communication.

However, existing works on optimizing GPU communi-
cation data paths cannot be applied in dynamic ML tasks
directly, because they cannot detect or leverage idle NICs
timely. In contrast, FuseLink explored a new direction that
exploit the underutilized NICs in dynamic-traffic ML tasks,
with data path optimization in runtime.

9 Conclusion

In this paper, we present FuseLink to enable inter-server GPUs
to efficiently communicate over multiple NICs. FuseLink ex-
ploits dedicated intra-server network for intra-server traffic
routing to fully utilize GPU interconnects when communicat-
ing through NICs. FuseLink achieves improved inter-server
bandwidth without interrupting ongoing computation and
communication tasks on peer GPUs. Through our evaluation,
we verify that FuseLink is effective in dynamic-traffic ma-
chine learning tasks, achieving high inter-server GPU band-
width and accelerating machine learning tasks including LLM
serving, EP MoE training, and DLRM training.

Acknowledgements

We thank our shepherd, Yang Zhou, and the anonymous OSDI
reviewers for their insightful feedback. This work is supported
in part by the Hong Kong RGC TRS T41-603/20R, GRF
16213621, ITC ACCESS, NSFC 62402407, NSFC Excellent
Young Scientists Fund Program (Overseas). Kai Chen is the
corresponding author.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 103

References

[1] Gloo: Collective communications library with various
primitives for multi-machine training. URL: https:
//github.com/facebookincubator/gloo.

[2] NVIDIA DGX SuperPOD: Next Generation Scalable
Infrastructure for AI Leadership. URL: https://docs
.nvidia.com/https:/docs.nvidia.com/dgx-sup
erpod-reference-architecture-dgx-h100.pdf.

[3] NVIDIA GB200 NVL72. URL: https://nvdam.wi
den.net/s/wwnsxrhm2w/blackwell-datasheet-3
384703.

[4] Criteo . Criteo Display Advertisement Dataset. URL:
https://go.criteo.net/criteo-research-kag
gle-display-advertising-challenge-dataset
.tar.gz.

[5] Microsoft . AzurePublicDataset. URL: https://gith
ub.com/Azure/AzurePublicDataset/blob/maste
r/AzureLLMInferenceDataset2023.md.

[6] Nvidia . Unified Addressing. URL: https://docs.n
vidia.com/cuda/cuda-driver-api/group__CUDA
__UNIFIED.html.

[7] PCI-SIG . PCI Express Base Specification. URL: http
s://pcisig.com/specifications/pciexpress/.

[8] WikiChip . Infinity Fabric (IF) - AMD. URL: https:
//en.wikichip.org/wiki/amd/infinity_fabric.

[9] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: A system for large-
scale machine learning. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, pages 265–283, USA, 2016.
USENIX Association.

[10] Bilge Acun, Matthew Murphy, Xiaodong Wang, Jade
Nie, Carole-Jean Wu, and Kim Hazelwood. Under-
standing training efficiency of deep learning recom-
mendation models at scale. In 2021 IEEE Interna-
tional Symposium on High-Performance Computer Ar-
chitecture (HPCA). IEEE, February 2021. URL: http:
//dx.doi.org/10.1109/HPCA51647.2021.00072,
doi:10.1109/hpca51647.2021.00072.

[11] Infiniband Association. Infiniband Roadmap. URL:
https://www.infinibandta.org/infiniband-r
oadmap/.

[12] Qizhe Cai, Midhul Vuppalapati, Jaehyun Hwang, Chris-
tos Kozyrakis, and Rachit Agarwal. Towards Ms Tail
Latency and Terabit Ethernet: Disaggregating the Host
Network Stack. In Proceedings of the ACM SIGCOMM
2022 Conference, SIGCOMM ’22, pages 767–779, New
York, NY, USA, 2022. Association for Computing Ma-
chinery. doi:10.1145/3544216.3544230.

[13] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal
Shaked, Tushar Chandra, Hrishi Aradhye, Glen Ander-
son, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil,
Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu,
and Hemal Shah. Wide & deep learning for recom-
mender systems. In Proceedings of the 1st Workshop on
Deep Learning for Recommender Systems, Dlrs 2016,
pages 7–10, New York, NY, USA, 2016. Association for
Computing Machinery. doi:10.1145/2988450.2988
454.

[14] Ching-Hsiang Chu, Pouya Kousha, Ammar Ahmad
Awan, Kawthar Shafie Khorassani, Hari Subramoni, and
Dhabaleswar K. (D K) Panda. NV-group: Link-efficient
reduction for distributed deep learning on modern dense
GPU systems. In Proceedings of the 34th ACM Inter-
national Conference on Supercomputing, Ics ’20, New
York, NY, USA, 2020. Association for Computing Ma-
chinery. doi:10.1145/3392717.3392771.

[15] DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai,
Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang
Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Han-
wei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian
Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang,
Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu,
Junlong Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao,
Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong
Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang,
Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Mingming Li,
Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang,
Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du,
R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe
Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen,
S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang
Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye, Shi-
rong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shun-
feng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei,
Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao,
Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wen-
qin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu
Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiao-

104 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo
https://docs.nvidia.com/https:/docs.nvidia.com/dgx-superpod-reference-architecture-dgx-h100.pdf
https://docs.nvidia.com/https:/docs.nvidia.com/dgx-superpod-reference-architecture-dgx-h100.pdf
https://docs.nvidia.com/https:/docs.nvidia.com/dgx-superpod-reference-architecture-dgx-h100.pdf
https://nvdam.widen.net/s/wwnsxrhm2w/blackwell-datasheet-3384703
https://nvdam.widen.net/s/wwnsxrhm2w/blackwell-datasheet-3384703
https://nvdam.widen.net/s/wwnsxrhm2w/blackwell-datasheet-3384703
https://go.criteo.net/criteo-research-kaggle-display-advertising-challenge-dataset.tar.gz
https://go.criteo.net/criteo-research-kaggle-display-advertising-challenge-dataset.tar.gz
https://go.criteo.net/criteo-research-kaggle-display-advertising-challenge-dataset.tar.gz
https://github.com/Azure/AzurePublicDataset/blob/master/AzureLLMInferenceDataset2023.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzureLLMInferenceDataset2023.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzureLLMInferenceDataset2023.md
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__UNIFIED.html
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__UNIFIED.html
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__UNIFIED.html
https://pcisig.com/specifications/pciexpress/
https://pcisig.com/specifications/pciexpress/
https://en.wikichip.org/wiki/amd/infinity_fabric
https://en.wikichip.org/wiki/amd/infinity_fabric
http://dx.doi.org/10.1109/HPCA51647.2021.00072
http://dx.doi.org/10.1109/HPCA51647.2021.00072
https://doi.org/10.1109/hpca51647.2021.00072
https://www.infinibandta.org/infiniband-roadmap/
https://www.infinibandta.org/infiniband-roadmap/
https://doi.org/10.1145/3544216.3544230
https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1145/3392717.3392771

jin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha
Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin
Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu,
Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q.
Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong
Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao,
Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng,
Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying
Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang
Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou,
Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-
jia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting
Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang
Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe
Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie,
Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng
Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu
Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao,
and Zizheng Pan. DeepSeek-V3 technical report, 2025.
URL: https://arxiv.org/abs/2412.19437,
arXiv:2412.19437.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidirec-
tional transformers for language understanding, 2019.
arXiv:1810.04805.

[17] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414,
Seattle, WA, April 2014. USENIX Association. URL:
https://www.usenix.org/conference/nsdi14/t
echnical-sessions/dragojeviÄĞ.

[18] William Fedus, Barret Zoph, and Noam Shazeer. Switch
transformers: Scaling to trillion parameter models with
simple and efficient sparsity. Journal of Machine Learn-
ing Research, 23(1), January 2022.

[19] Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li,
Yonghao Zhu, Haoxiang Lin, and Mao Yang. Esti-
mating GPU memory consumption of deep learning
models. In Proceedings of the 28th ACM Joint Meet-
ing on European Software Engineering Conference
and Symposium on the Foundations of Software Engi-
neering, Esec/Fse 2020, pages 1342–1352, New York,
NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3368089.3417050.

[20] Google. System architecture | Cloud TPU. URL: https:
//cloud.google.com/tpu/docs/system-archite
cture-tpu-vm.

[21] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
over commodity ethernet at scale. In Proceedings of
the 2016 ACM SIGCOMM Conference, pages 202–215,
2016.

[22] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li,
and Xiuqiang He. DeepFM: A factorization-machine
based neural network for CTR prediction, 2017. URL:
https://arxiv.org/abs/1703.04247, arXiv:1703
.04247.

[23] Mert Hidayetoglu, Simon Garcia De Gonzalo, Elliott
Slaughter, Yu Li, Christopher Zimmer, Tekin Bicer, Bin
Ren, William Gropp, Wen-Mei Hwu, and Alex Aiken.
CommBench: Micro-benchmarking hierarchical net-
works with multi-GPU, multi-NIC nodes. In Proceed-
ings of the 38th ACM International Conference on
Supercomputing, Ics ’24, pages 426–436, New York,
NY, USA, 2024. Association for Computing Machinery.
doi:10.1145/3650200.3656591.

[24] Changho Hwang, KyoungSoo Park, Ran Shu, Xinyuan
Qu, Peng Cheng, and Yongqiang Xiong. ARK: GPU-
driven Code Execution for Distributed Deep Learning.
In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), pages 87–101,
Boston, MA, April 2023. USENIX Association. URL:
https://www.usenix.org/conference/nsdi23/p
resentation/hwang.

[25] Biye Jiang, Chao Deng, Huimin Yi, Zelin Hu, Guorui
Zhou, Yang Zheng, Sui Huang, Xinyang Guo, Dongyue
Wang, Yue Song, Liqin Zhao, Zhi Wang, Peng Sun,
Yu Zhang, Di Zhang, Jinhui Li, Jian Xu, Xiaoqiang Zhu,
and Kun Gai. XDL: An industrial deep learning frame-
work for high-dimensional sparse data. In Proceedings
of the 1st International Workshop on Deep Learning
Practice for High-Dimensional Sparse Data, Kdd ’19.
ACM, August 2019. URL: http://dx.doi.org/10.
1145/3326937.3341255, doi:10.1145/3326937.33
41255.

[26] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed DNN training in heterogeneous
GPU/CPU clusters. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 463–479. USENIX Association, November
2020. URL: https://www.usenix.org/conferenc
e/osdi20/presentation/jiang.

[27] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang,
Yangrui Chen, Zhi Zhang, Yanghua Peng, Xiang Li,
Cong Xie, Shibiao Nong, Yulu Jia, Sun He, Hongmin
Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding Zhou,

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 105

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/1810.04805
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi%C3%84%C2%87
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi%C3%84%C2%87
https://doi.org/10.1145/3368089.3417050
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
https://arxiv.org/abs/1703.04247
https://arxiv.org/abs/1703.04247
https://arxiv.org/abs/1703.04247
https://doi.org/10.1145/3650200.3656591
https://www.usenix.org/conference/nsdi23/presentation/hwang
https://www.usenix.org/conference/nsdi23/presentation/hwang
http://dx.doi.org/10.1145/3326937.3341255
http://dx.doi.org/10.1145/3326937.3341255
https://doi.org/10.1145/3326937.3341255
https://doi.org/10.1145/3326937.3341255
https://www.usenix.org/conference/osdi20/presentation/jiang
https://www.usenix.org/conference/osdi20/presentation/jiang

Yiyao Sheng, Zhuo Jiang, Haohan Xu, Haoran Wei,
Zhang Zhang, Pengfei Nie, Leqi Zou, Sida Zhao, Liang
Xiang, Zherui Liu, Zhe Li, Xiaoying Jia, Jianxi Ye,
Xin Jin, and Xin Liu. MegaScale: Scaling large lan-
guage model training to more than 10,000 GPUs, 2024.
arXiv:2402.15627.

[28] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Design guidelines for high performance RDMA
systems. In 2016 USENIX Annual Technical Con-
ference (USENIX ATC 16), pages 437–450, Denver,
CO, June 2016. USENIX Association. URL: https:
//www.usenix.org/conference/atc16/technica
l-sessions/presentation/kalia.

[29] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez,
Hao Zhang, and Ion Stoica. Efficient memory man-
agement for large language model serving with Page-
dAttention. In Proceedings of the 29th Symposium on
Operating Systems Principles, Sosp ’23, pages 611–626,
New York, NY, USA, 2023. Association for Computing
Machinery. doi:10.1145/3600006.3613165.

[30] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li,
Xu Liu, Nathan R. Tallent, and Kevin J. Barker. Evalu-
ating modern GPU interconnect: PCIe, nvlink, NV-SLI,
nvswitch and gpudirect. IEEE Transactions on Parallel
and Distributed Systems, 31(1):94–110, January 2020.
doi:10.1109/TPDS.2019.2928289.

[31] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao
Zhang. Socksdirect: Datacenter Sockets Can Be Fast
and Compatible. In Proceedings of the ACM Special In-
terest Group on Data Communication, SIGCOMM ’19,
pages 90–103, New York, NY, USA, 2019. Association
for Computing Machinery. doi:10.1145/3341302.
3342071.

[32] Mu Li, David G. Andersen, Jun Woo Park, Alexander J.
Smola, Amr Ahmed, Vanja Josifovski, James Long, Eu-
gene J. Shekita, and Bor-Yiing Su. Scaling Distributed
Machine Learning with the Parameter Server. In Pro-
ceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, OSDI’14, pages
583–598, USA, 2014. USENIX Association.

[33] Weiqing Li, Guochao Jiang, Xiangyong Ding,
Zhangcheng Tao, Chuzhan Hao, Chenfeng Xu,
Yuewei Zhang, and Hao Wang. FlowKV: A dis-
aggregated inference framework with low-latency
KV cache transfer and load-aware scheduling, 2025.
URL: https://arxiv.org/abs/2504.03775,
arXiv:2504.03775.

[34] Wenxue Li, Xiangzhou Liu, Yuxuan Li, Yilun Jin, Han
Tian, Zhizhen Zhong, Guyue Liu, Ying Zhang, and Kai

Chen. Understanding communication characteristics
of distributed training. In Proceedings of the 8th Asia-
Pacific Workshop on Networking, APNet ’24, pages 1–8,
New York, NY, USA, 2024. Association for Computing
Machinery. doi:10.1145/3663408.3663409.

[35] Heng Liao, Bingyang Liu, Xianping Chen, Zhigang Guo,
Chuanning Cheng, Jianbing Wang, Xiangyu Chen, Peng
Dong, Rui Meng, Wenjie Liu, Zhe Zhou, Ziyang Zhang,
Yuhang Gai, Cunle Qian, Yi Xiong, Zhongwu Cheng,
Jing Xia, Yuli Ma, Xi Chen, Wenhua Du, Shizhong
Xiao, Chungang Li, Yong Qin, Liudong Xiong, Zhou
Yu, Lv Chen, Lei Chen, Buyun Wang, Pei Wu, Junen
Gao, Xiaochu Li, Jian He, Shizhuan Yan, and Bill Mc-
Coll. Ub-mesh: a hierarchically localized nd-fullmesh
datacenter network architecture, 2025. URL: https://
arxiv.org/abs/2503.20377, arXiv:2503.20377.

[36] Xudong Liao, Yijun Sun, Han Tian, Xinchen Wan, Yilun
Jin, Zilong Wang, Zhenghang Ren, Xinyang Huang,
Wenxue Li, Kin Fai Tse, Zhizhen Zhong, Guyue Liu,
Ying Zhang, Xiaofeng Ye, Yiming Zhang, and Kai Chen.
mFabric: An efficient and scalable fabric for mixture-of-
experts training, 2025. URL: https://arxiv.org/ab
s/2501.03905, arXiv:2501.03905.

[37] Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray,
Yuyang Huang, Qizheng Zhang, Kuntai Du, Jiayi Yao,
Shan Lu, Ganesh Ananthanarayanan, Michael Maire,
Henry Hoffmann, Ari Holtzman, and Junchen Jiang.
CacheGen: KV cache compression and streaming for
fast large language model serving. In Proceedings of the
ACM SIGCOMM 2024 Conference, Acm Sigcomm ’24,
pages 38–56, Sydney, NSW, Australia and New York,
NY, USA, 2024. Association for Computing Machinery.
doi:10.1145/3651890.3672274.

[38] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang
Xiong, Peng Cheng, Jiansong Zhang, Enhong Chen, and
Thomas Moscibroda. Multi-Path Transport for RDMA
in Datacenters. In 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 18),
pages 357–371, Renton, WA, April 2018. USENIX As-
sociation. URL: https://www.usenix.org/confere
nce/nsdi18/presentation/lu.

[39] Samuel Matzek, Max Grossman, Minsik Cho, Anar Yusi-
fov, Bryant Nelson, and Amit Juneja. Data-parallel dis-
tributed training of very large models beyond GPU ca-
pacity, 2018. arXiv:1811.12174.

[40] Yixuan Mei, Yonghao Zhuang, Xupeng Miao, Juncheng
Yang, Zhihao Jia, and Rashmi Vinayak. Helix: Dis-
tributed serving of large language models via max-flow
on heterogeneous gpus, 2024. URL: https://arxiv.
org/abs/2406.01566, arXiv:2406.01566.

106 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://arxiv.org/abs/2402.15627
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1109/TPDS.2019.2928289
https://doi.org/10.1145/3341302.3342071
https://doi.org/10.1145/3341302.3342071
https://arxiv.org/abs/2504.03775
https://arxiv.org/abs/2504.03775
https://doi.org/10.1145/3663408.3663409
https://arxiv.org/abs/2503.20377
https://arxiv.org/abs/2503.20377
https://arxiv.org/abs/2503.20377
https://arxiv.org/abs/2501.03905
https://arxiv.org/abs/2501.03905
https://arxiv.org/abs/2501.03905
https://doi.org/10.1145/3651890.3672274
https://www.usenix.org/conference/nsdi18/presentation/lu
https://www.usenix.org/conference/nsdi18/presentation/lu
https://arxiv.org/abs/1811.12174
https://arxiv.org/abs/2406.01566
https://arxiv.org/abs/2406.01566
https://arxiv.org/abs/2406.01566

[41] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,
Phillip B. Gibbons, and Matei Zaharia. PipeDream:
Generalized pipeline parallelism for DNN training. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, pages 1–15, New York,
NY, USA, 2019. Association for Computing Machinery.
doi:10.1145/3341301.3359646.

[42] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia.
Efficient large-scale language model training on GPU
clusters using megatron-LM. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, Sc ’21, New York,
NY, USA, 2021. Association for Computing Machinery.
doi:10.1145/3458817.3476209.

[43] NVIDIA. Common Data Center Architectures | Two-
Tier Clos Architecture. URL: https://docs.nvidia.
com/networking-ethernet-software/knowledg
e-base/Setup-and-Getting-Started/layer-1-D
ata-Center-Cheat-Sheet/#two-tier-clos-arc
hitecture-leaf-spine.

[44] Nvidia. Doubling all2all performance with NVIDIA
collective communication library 2.12. URL: https:
//developer.nvidia.com/blog/doubling-all2a
ll-performance-with-nvidia-collective-com
munication-library-2-12/.

[45] NVIDIA. Nvidia NCCL. URL: https://developer.
nvidia.com/nccl.

[46] NVIDIA. NVLink & NVSwitch: Fastest HPC Data
Center Platform. URL: https://www.nvidia.com/e
n-us/data-center/nvlink/.

[47] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka
Shah, Íñigo Goiri, Saeed Maleki, and Ricardo Bianchini.
Splitwise: Efficient generative LLM inference using
phase splitting. In ISCA, June 2024. URL: https:
//www.microsoft.com/en-us/research/publica
tion/splitwise-efficient-generative-llm-i
nference-using-phase-splitting/.

[48] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.
A generic communication scheduler for distributed DNN
training acceleration. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, Sosp ’19,
pages 16–29, New York, NY, USA, 2019. Association
for Computing Machinery. doi:10.1145/3341301.
3359642.

[49] Sreeram Potluri, Khaled Hamidouche, Akshay
Venkatesh, Devendar Bureddy, and Dhabaleswar K.
Panda. Efficient inter-node MPI communication
using gpudirect RDMA for InfiniBand clusters with
NVIDIA gpus. In 2013 42nd International Con-
ference on Parallel Processing, pages 80–89, 2013.
doi:10.1109/ICPP.2013.17.

[50] Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang,
Yongwei Wu, Weimin Zheng, and Xinran Xu. Moon-
cake: A kvcache-centric disaggregated architecture for
LLM serving, 2024. URL: https://arxiv.org/abs/
2407.00079, arXiv:2407.00079.

[51] Sudarsanan Rajasekaran, Manya Ghobadi, and Aditya
Akella. CASSINI: Network-Aware job scheduling in
machine learning clusters. In 21st USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 24), pages 1403–1420, Santa Clara, CA,
April 2024. USENIX Association. URL: https:
//www.usenix.org/conference/nsdi24/prese
ntation/rajasekaran.

[52] Kiran Ranganath, AmirAli Abdolrashidi, Shuai-
wen Leon Song, and Daniel Wong. Speeding up col-
lective communications through inter-GPU re-routing.
IEEE Computer Architecture Letters, 18(2):128–131,
2019. doi:10.1109/LCA.2019.2933842.

[53] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. Deepspeed: System optimizations enable
training deep learning models with over 100 billion pa-
rameters. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pages 3505–3506, 2020.

[54] Alexander Sergeev and Mike Del Balso. Horovod: Fast
and easy distributed deep learning in TensorFlow. arXiv
preprint arXiv:1802.05799, 2018. arXiv:1802.05799.

[55] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean.
Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer, 2017. URL: https://arxiv.
org/abs/1701.06538, arXiv:1701.06538.

[56] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-LM: Training multi-billion parameter lan-
guage models using model parallelism, 2020. arXiv:
1909.08053.

[57] Yiltan Hassan Temuçin, AmirHossein Sojoodi, Pedram
Alizadeh, and Ahmad Afsahi. Efficient multi-path
nvlink/pcie-aware UCX based collective communica-
tion for deep learning. In 2021 IEEE Symposium on
High-Performance Interconnects (HOTI), pages 25–34,
2021. doi:10.1109/HOTI52880.2021.00018.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 107

https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3458817.3476209
https://docs.nvidia.com/networking-ethernet-software/knowledge-base/Setup-and-Getting-Started/layer-1-Data-Center-Cheat-Sheet/#two-tier-clos-architecture-leaf-spine
https://docs.nvidia.com/networking-ethernet-software/knowledge-base/Setup-and-Getting-Started/layer-1-Data-Center-Cheat-Sheet/#two-tier-clos-architecture-leaf-spine
https://docs.nvidia.com/networking-ethernet-software/knowledge-base/Setup-and-Getting-Started/layer-1-Data-Center-Cheat-Sheet/#two-tier-clos-architecture-leaf-spine
https://docs.nvidia.com/networking-ethernet-software/knowledge-base/Setup-and-Getting-Started/layer-1-Data-Center-Cheat-Sheet/#two-tier-clos-architecture-leaf-spine
https://docs.nvidia.com/networking-ethernet-software/knowledge-base/Setup-and-Getting-Started/layer-1-Data-Center-Cheat-Sheet/#two-tier-clos-architecture-leaf-spine
https://developer.nvidia.com/blog/doubling-all2all-performance-with-nvidia-collective-communication-library-2-12/
https://developer.nvidia.com/blog/doubling-all2all-performance-with-nvidia-collective-communication-library-2-12/
https://developer.nvidia.com/blog/doubling-all2all-performance-with-nvidia-collective-communication-library-2-12/
https://developer.nvidia.com/blog/doubling-all2all-performance-with-nvidia-collective-communication-library-2-12/
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.microsoft.com/en-us/research/publication/splitwise-efficient-generative-llm-inference-using-phase-splitting/
https://www.microsoft.com/en-us/research/publication/splitwise-efficient-generative-llm-inference-using-phase-splitting/
https://www.microsoft.com/en-us/research/publication/splitwise-efficient-generative-llm-inference-using-phase-splitting/
https://www.microsoft.com/en-us/research/publication/splitwise-efficient-generative-llm-inference-using-phase-splitting/
https://doi.org/10.1145/3341301.3359642
https://doi.org/10.1145/3341301.3359642
https://doi.org/10.1109/ICPP.2013.17
https://arxiv.org/abs/2407.00079
https://arxiv.org/abs/2407.00079
https://arxiv.org/abs/2407.00079
https://www.usenix.org/conference/nsdi24/presentation/rajasekaran
https://www.usenix.org/conference/nsdi24/presentation/rajasekaran
https://www.usenix.org/conference/nsdi24/presentation/rajasekaran
https://doi.org/10.1109/LCA.2019.2933842
https://arxiv.org/abs/1802.05799
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://doi.org/10.1109/HOTI52880.2021.00018

[58] Ajay Tirumala and Raymond Wong. NVIDIA blackwell
platform: Advancing generative AI and accelerated com-
puting. In 2024 IEEE Hot Chips 36 Symposium (HCS),
pages 1–33, Los Alamitos, CA, USA, August 2024.
IEEE Computer Society. URL: https://doi.ieeeco
mputersociety.org/10.1109/HCS61935.2024.10
665247, doi:10.1109/HCS61935.2024.10665247.

[59] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
Aurelien Rodriguez, Armand Joulin, Edouard Grave,
and Guillaume Lample. LLaMA: Open and efficient
foundation language models, 2023. arXiv:2302.139
71.

[60] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, !ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017.

[61] Steve Wang and Will Cukierski. Click-through rate
prediction, 2014. URL: https://kaggle.com/compe
titions/avazu-ctr-prediction.

[62] Xingda Wei, Rong Chen, and Haibo Chen. Fast RDMA-
based ordered Key-Value store using remote learned
cache. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20), pages 117–
135. USENIX Association, November 2020. URL:
https://www.usenix.org/conference/osdi20
/presentation/wei.

[63] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and
Mark Handley. Design, implementation and evalua-
tion of congestion control for multipath TCP. In 8th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 11), Boston, MA, March 2011.
USENIX Association. URL: https://www.usenix.o
rg/conference/nsdi11/design-implementatio
n-and-evaluation-congestion-control-multi
path-tcp.

[64] Kaiqiang Xu, Decang Sun, Han Tian, Junxue Zhang,
and Kai Chen. GREEN: Carbon-efficient resource
scheduling for machine learning clusters. In 22nd
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 25), pages 999–1014, Philadel-
phia, PA, April 2025. USENIX Association. URL:
https://www.usenix.org/conference/nsdi25
/presentation/xu-kaiqiang.

[65] Kaiqiang Xu, Decang Sun, Hao Wang, Zhenghang Ren,
Xinchen Wan, Xudong Liao, Zilong Wang, Junxue
Zhang, and Kai Chen. Design and operation of shared

machine learning clusters on campus. In Proceed-
ings of the 30th ACM International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, Volume 1, Asplos ’25, pages 295–
310, Rotterdam, Netherlands and New York, NY, USA,
2025. Association for Computing Machinery. doi:
10.1145/3669940.3707266.

[66] Jilong Xue, Youshan Miao, Cheng Chen, Ming Wu, Lin-
tao Zhang, and Lidong Zhou. Fast distributed deep
learning over rdma. In Proceedings of the Fourteenth
EuroSys Conference 2019, pages 1–14, 2019.

[67] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang,
and Luke Zettlemoyer. OPT: Open pre-trained trans-
former language models, 2022. URL: https://arxiv.
org/abs/2205.01068, arXiv:2205.01068.

[68] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E.
Gonzalez, and Ion Stoica. Alpa: Automating Inter- and
Intra-Operator Parallelism for Distributed Deep Learn-
ing. In Marcos K. Aguilera and Hakim Weatherspoon,
editors, 16th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2022, Carlsbad, CA,
USA, July 11-13, 2022, pages 559–578. USENIX Asso-
ciation, 2022. URL: https://www.usenix.org/con
ference/osdi22/presentation/zheng-lianmin.

[69] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu,
Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang.
{DistServe}: Disaggregating prefill and decoding for
goodput-optimized large language model serving. In
18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24), pages 193–210, 2024.

108 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://doi.ieeecomputersociety.org/10.1109/HCS61935.2024.10665247
https://doi.ieeecomputersociety.org/10.1109/HCS61935.2024.10665247
https://doi.ieeecomputersociety.org/10.1109/HCS61935.2024.10665247
https://doi.org/10.1109/HCS61935.2024.10665247
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://kaggle.com/competitions/avazu-ctr-prediction
https://kaggle.com/competitions/avazu-ctr-prediction
https://www.usenix.org/conference/osdi20/presentation/wei
https://www.usenix.org/conference/osdi20/presentation/wei
https://www.usenix.org/conference/nsdi11/design-implementation-and-evaluation-congestion-control-multipath-tcp
https://www.usenix.org/conference/nsdi11/design-implementation-and-evaluation-congestion-control-multipath-tcp
https://www.usenix.org/conference/nsdi11/design-implementation-and-evaluation-congestion-control-multipath-tcp
https://www.usenix.org/conference/nsdi11/design-implementation-and-evaluation-congestion-control-multipath-tcp
https://www.usenix.org/conference/nsdi25/presentation/xu-kaiqiang
https://www.usenix.org/conference/nsdi25/presentation/xu-kaiqiang
https://doi.org/10.1145/3669940.3707266
https://doi.org/10.1145/3669940.3707266
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin

	Introduction
	Background
	Deficiency in Dynamic-traffic ML
	Opportunities

	FuseLink Overview
	Challenges

	FuseLink Design
	Efficient Intra-server Relaying
	Interruption-free Relaying
	NIC Contention Mitigation
	Worker-aware NIC Monitoring
	Load-aware Scheduling

	Scheduling with Efficiency

	Implementation
	Evaluation
	Microbenchmark
	End-to-End Evaluation

	Discussion and Limitations
	Related Work
	Conclusion

