Design and Operation of Shared Machine Learning
Clusters on Campus

Kaiqiang Xu Decang Sun Hao Wang
Hong Kong University of Science and Hong Kong University of Science and Hong Kong University of Science and
Technology Technology Technology

Hong Kong, Hong Kong
kxuar@cse.ust.hk

Hong Kong, Hong Kong
dsunak@cse.ust.hk

Hong Kong, Hong Kong
hwangdv@connect.ust.hk

Zhenghang Ren Xinchen Wan Xudong Liao
Hong Kong University of Science and Hong Kong University of Science and Hong Kong University of Science and
Technology Technology Technology

Hong Kong, Hong Kong
zrenak@cse.ust.hk

Hong Kong, Hong Kong
xinchen.wan@connect.ust.hk

Hong Kong, Hong Kong
xliaoaf@connect.ust.hk

Zilong Wang Junxue Zhang Kai Chen
Hong Kong University of Science and Hong Kong University of Science and Hong Kong University of Science and
Technology Technology Technology

Hong Kong, Hong Kong
zwangfb@connect.ust.hk

Abstract

The rapid advancement of large machine learning (ML) mod-
els has driven universities worldwide to invest heavily in
GPU clusters. Effectively sharing these resources among
multiple users is essential for maximizing both utilization
and accessibility. However, managing shared GPU clusters
presents significant challenges, ranging from system config-
uration to fair resource allocation among users.

This paper introduces SING, a full-stack solution tailored
to simplify shared GPU cluster management. Aimed at ad-
dressing the pressing need for efficient resource sharing
with limited staffing, SING enhances operational efficiency
by reducing maintenance costs and optimizing resource uti-
lization. We provide a comprehensive overview of its four
extensible architectural layers, explore the features of each
layer, and share insights from real-world deployment, includ-
ing usage patterns and incident management strategies.

As part of our commitment to advancing shared ML cluster
management, we open-source SING’s resources to support
the development and operation of similar systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS °25, March 30-April 3, 2025, Rotterdam, Netherlands

© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0698-1/25/03
https://doi.org/10.1145/3669940.3707266

Hong Kong, Hong Kong
jzhangcs@connect.ust.hk

Hong Kong, Hong Kong
kaichen@cse.ust.hk

CCS Concepts: - Computer systems organization — Dis-
tributed architectures.

Keywords: Shared GPU Cluster; Multi-tenant Cluster Oper-
ations; Resource Management

ACM Reference Format:

Kaigiang Xu, Decang Sun, Hao Wang, Zhenghang Ren, Xinchen
Wan, Xudong Liao, Zilong Wang, Junxue Zhang, and Kai Chen.
2025. Design and Operation of Shared Machine Learning Clusters
on Campus. In Proceedings of the 30th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 1 (ASPLOS °25), March 30-April 3, 2025, Rotterdam,
Netherlands. ACM, New York, NY, USA, 16 pages. https://doi.org/
10.1145/3669940.3707266

1 Introduction

In the age of large machine learning (ML) models [6, 38],
there has been a significant increase in the need for GPU
clusters. This surge in demand has been met with substantial
research funding and human capital investments in univer-
sities throughout the world [28]. However, not all campus
infrastructures are equal, and many universities do not have
the expertise to make the best use of shared GPU clusters.
In most cases, campus IT (or graduate students) pick a tool
that they are familiar with (e.g., Slurm [41]) and use it as-is
with sub-optimal settings. Consequently, they end up under-
utilizing the already limited resources, putting a significant
barrier to the democratization of access to ML.

Effective management of a shared GPU cluster requires
addressing a hierarchical set of system challenges, including
cluster management frameworks [41, 50], scheduling strate-
gies [34, 47], network transport protocols [1, 52], topology

https://doi.org/10.1145/3669940.3707266
https://doi.org/10.1145/3669940.3707266
https://doi.org/10.1145/3669940.3707266

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

design [7, 27], and other system configurations [3, 26]. A
brief online search yields numerous inquiries [32, 36, 37] for
advice on managing shared GPU clusters. Our observations
indicate that fellow researchers invest significant effort in
exploring software solutions, and frequently struggle with
improving the clusters’ usability, stability, and performance
to meet expectations.

Admittedly, a wealth of information is available online
offering recommendations [16, 40] for managing shared clus-
ters. However, effectively leveraging these solutions for a
research-focused, shared GPU cluster demands deep exper-
tise and continuous operational effort for evaluation, deploy-
ment, and maintenance.

Consider multi-user resource allocation as an example: A
simple and common approach to GPU sharing is to provide
direct shell access to users, which can result in system insta-
bility arising from users concurrently running computing
processes, competing for memory resources, potentially dis-
rupting each other’s runtime dependencies, and requiring
manual coordination and careful cleanup. On the flip side,
Kubernetes [50], a widely adopted cluster manager, is known
to be effort-demanding in deployment. Originally designed
for internet backend services, Kubernetes features a complex
architecture with service-hosting capabilities like load bal-
ancing and rollbacks but lacks native support for user-access
control and job queuing for resource sharing. These com-
plexities create engineering challenges and overhead when
applied to ML model training jobs in campus ML clusters.
Details of existing solutions are discussed in §2.

In this paper, we present our experience from the design
and operation of SING, a shared GPU cluster tailored for ML
research in academic institutions.

Design: SING streamlines ML job processing into four
system layers: job profile, adapter, scheduling, and execu-
tion (§3). Each layer utilizes a low-maintenance software
stack that efficiently handles tasks like job scheduling and
user isolation, while minimizing burdens in operation. We
employ effective resource allocation strategies to prevent low
resource utilization and improve fairness during allocation.

Operation: Launched in early 2021, SING has become a
cornerstone of our institution’s Al research infrastructure,
managing over 160 GPUs and serving over 480 active users.
These users have submitted over 28,000 ML jobs, which gen-
erated experiment results that contribute to about 40 peer-
reviewed ML papers. We present a comprehensive analysis
of SING’s usage patterns, job characteristics, and our incident
handling experiences (§5). We will also release job trace data
to facilitate further research in this area (§6).

At its core, SING places a strong emphasis on simplicity
and stability when it comes to selecting software stacks.
In line with the constraints of limited manpower within re-
search teams, our approach to designing and choosing SING’s
components is guided by the principle of achieving minimal

Kaigiang Xu et al.

viability while still fulfilling the essential requirements for
running ML jobs. To facilitate this design goal, SING adopts a
4-layer architectural abstraction, connecting its components
that handle the compilation, scheduling, and execution of
user-submitted jobs within the cluster. The detailed explo-
ration of SING’s interface, internal workflow, and system
configurations can be found in §3.

SING offers a user-friendly interface from the local com-
mand line, allowing users to submit jobs with code, con-
figurations, and specified resources. This workflow is also
referred to as Machine-Learning-as-a-Service (MLaaS) [55].
For maximum usability, SING supports two job formats si-
multaneously: scripting (submitting a script, which is widely
used with HPC clusters and adopted into ML computing) and
containerizing (submitting a Dockerfile [10] describing a con-
tainer that runs the job). Similar to cloud services providers,
SING automates resource provisioning for job execution, but
with additional ML-specific features including dependency
setup, job queuing and scheduling, port forwarding, interac-
tive debugging, and access to logs and outputs.

SING is designed with extensibility, allowing cluster op-
erators to employ alternative options in the layers of SING
to achieve new capabilities. Beyond the default software
selections that prioritize architectural simplicity and opera-
tional efficiency, we also discuss scaling opportunities such
as expanding the executor backend to cloud platforms.

During developing and operating SING, balancing user-
friendliness with operational efficiency was challenging. We
refined our design choices by monitoring user interactions
and analyzing anonymous usage data, while addressing per-
formance bottlenecks and resolving instances of failures and
incidents. We delve into these operational insights, focusing
on usage patterns, job characteristics, and incident handling
and prevention in §5.

This paper contributes to the field in two main aspects:

e Operation-Efficient Design (§3): SING stands out as an
accessible solution that manages a shared GPU cluster
and achieves operational efficiency (i.e., low maintenance
cost and high resource utilization), specifically addressing
the challenges posed by limited manpower in research
teams. We describe seven core features of SING’s design
that contribute to its operational efficiency.

e Operational Insights (§5): We track and analyze usage
patterns and job characteristics and also share our experi-
ences in incident handling during the operation of SING.
These data and experiences offer valuable insights into
the design and operation of similar campus ML clusters.

This paper represents our ongoing effort aimed at im-
proving the management of shared ML clusters in academic
institutions. We make the source code, software stack con-
figurations, and SING job traces (§6) available to assist in
deploying and operating similar facilities.

Design and Operation of Shared Machine Learning Clusters on Campus

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 1. Comparison of existing solutions for shared ML clusters. The analysis considers each solution’s core features without
extensive customization. References to #1-7 correspond to SING’s features described in §3.

Feature Category

Direct Shell Access

Traditional HPC

Container Platforms

SING

Resource Management

Job Resource Access

SSH & Linux Permissions

Login Node Submission

Deploy Container via UI/CLI

User Local Submission (#2)

Resource Scheduling

Manual Coordination

FCFS, Queuing

Quota-based

Optimized FCFS (#4)

Job Execution & Monitoring

Work Description Manual Command Job Script

Container File Multi-Format Support (#1) &

Dependency Setup Manual Command

Script Execution

Container Initialization Early-Init & Caching (#5)

Job Monitoring Server Login

Offline Debug with Output Log

Interactive Monitoring (#3)

User Experience and Complexity

User Learning Curve Simple - Basic Shell

Moderate - Job Script

Complex - Container Skills Moderate - Intuitive Workflow (#6)

Operator Setup Cost Low - Basic Linux

Moderate - Install Software

High - Complex Architecture Low to Moderate Cost (§4) &

Maintenance Cost High - Stability / Conflicts

Moderate - Stability Issues

High - Limited ML Job Support with Executor Extensibility (#7)

2 Background and Motivations

The growing demand for GPUs has led to significant finan-
cial and human resource investments. However, effectively
managing shared GPU clusters presents complex challenges,
including resource and environment provisioning, usability
and stability issues, and resource allocation efficiency.

2.1 Existing Solutions for Shared ML Clusters

In this section, we analyze the workflows of three common
solutions for managing shared ML clusters. In Table 1, we
summarize their advantages and disadvantages.

2.1.1 Direct Shell Access Sharing. A common approach
is to grant users native shell access to GPU-equipped ma-
chines through SSH, allowing direct interaction with GPU
resources. However, due to the lack of resource isolation and
management mechanisms, this method raises concerns about
system stability and security. Without careful coordination,
it can result in conflicts between competing user sessions,
degrading system performance and making it difficult to
ensure fair resource allocation.

Users typically follow the following workflow:

Step 1. User Connection: Users connect to GPU nodes via
SSH, gaining direct access to GPU resources.

Step 2. Manual Environment Setup: Users are responsi-
ble for manually configuring their runtime environments,
including installing necessary libraries and dependencies.

Step 3. Resource Allocation: Users must manually coordi-
nate GPU resources through other channels, to avoid poten-
tial conflicts or performance degradation.

Step 4. Job Execution and Cleanup: Users initiate ML tasks
by running their scripts directly on GPU nodes, requiring
them to manually manage job execution and clean up the
environment after the job finishes.

Analysis. While this approach offers simplicity in terms of
user access, it presents significant drawbacks.

First, users are required to manually configure their run-
time environments, including the installation of necessary

libraries and dependencies. This manual setup process can be
error-prone and time-consuming, adding to the operational
burden and potentially risking system stability.

Furthermore, users must proactively take responsibility
for coordinating GPU sharing, initiating ML tasks, and clean-
ing up their environment afterward. It can potentially in-
troduce conflicts between concurrent user sessions, which
not only degrades system performance but also makes it
challenging to ensure fair resource allocation.

2.1.2 Traditional HPC Solution. Universities often adopt
cluster workload management solutions from traditional
High-Performance Computing (HPC) clusters, with the Slurm
workload manager [41] being a popular choice. Slurm pro-
vides job queueing and scheduling capabilities in clusters.

In Slurm, users follow a more structured workflow:

Step 1. Job Submission: Users submit ML job requests from
a login node to the Slurm, with resource request specified.

Step 2. Job Queueing: Slurm is responsible for job queuing
and scheduling, using built-in schedulers.

Step 3. Runtime Environment: Users generally need to set
up the runtime environments within the job script, as there
is a lack of support for managing ML dependencies in Slurm.

Step 4. Execution: The system bootstraps and executes the
ML job on allocated nodes, and releases resources afterwards.

Analysis. Slurm lacks support for provisioning the com-
plex dependency environments required by ML jobs, posing
engineering difficulties to individual users. Job preparation
and submission are required to be done on the login nodes
of a Slurm cluster, and the login node often becomes a sin-
gle point of failure [15, 46], due to unexpected user actions
on the node (see detailed discussion in §3.1). Furthermore,
Slurm’s coarse-grained resource allocation mechanisms may
lead to resource fragmentations and underutilization under
certain submission orders and job characteristics [11].

Opportunity. Originally tailored for MPI applications, Slurm
stood out for its simplicity and performance. ML training
jobs in research often resemble MPI applications, using ad-
vanced MPI techniques [25, 43]. This similarity brings ML

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

job scheduling within Slurm’s scope. In this paper, our solu-
tion involves augmenting Slurm with ML-specific features
that transform it into an effective tool for shared ML clusters.

2.1.3 Container Platforms. Container orchestration plat-
forms such as Kubernetes [50] have garnered widespread
adoption in the industry for managing large-scale distributed
applications. Recently, Kubernetes has also been used to man-
age shared ML clusters, especially in production clusters with
user-facing ML applications.

In containerized solutions such as Kubernetes, users follow
a workflow centered around container orchestration:

Step 1. Containerization: Users package their ML program
and runtime dependencies into containers by writing a de-
scription file in a specific format.

Step 2. Container Deployment: Users submit container im-
ages on the Kubernetes cluster, specifying resource requests.

Step 3. Job Scheduling: Kubernetes schedules pods on avail-
able nodes, managing resource allocation.

Step 4. Job Execution: Containers are initiated to execute
ML tasks, with Kubernetes handling creation and releasing.

Analysis. Designed for internet services, Kubernetes has
a complex architecture with features like service discovery,
load balancing, and feature rollouts and rollbacks. In the
context of ML research, these complexities are unnecessary
and introduce engineering overhead.

More importantly, Kubernetes lacks native support for
user-level access control and job queuing essential for shared
ML clusters, each requiring a separate set of tools and con-
figurations [30] to be added on top of Kubernetes. Therefore,
deploying and maintaining a Kubernetes setup demands con-
siderable effort from cluster operators, including integration,
testing, and ongoing maintenance.

Meanwhile, for users without prior experience, creating
containers can be error-prone [39] with Dockerfile, and repli-
cating a cluster environment locally for error reproduction
is challenging and often requires operator assistance.

Overall, both users and operators face a steep learning
curve with Kubernetes, requiring skill development to man-
age their inherent complexities effectively [30].

Opportunity. Container platforms like Kubernetes are pow-
erful server operation tools, and SING’s design does not con-
flict with them. SING uses an adapter layer that can operate
over any execution layer, including container platforms or
computing clouds, allowing resource extensibility while re-
maining transparent to the users.

2.2 Cluster Schedulers and Computing Frameworks
This section provides a brief overview of related systems
that also operate in cluster environments. A more detailed
discussion can be found in §8.

ML Cluster Schedulers. State-of-the-art schedulers, such
as Sia [47], Pollux [34], and Gavel [24], optimize scheduling

Kaigiang Xu et al.

strategies to enhance cluster efficiency, such as reducing
average job completion time. These schedulers can be in-
tegrated into cluster managers like Slurm, Kubernetes, and
SING, which manage the entire ML job lifecycle.

Computing Frameworks. Distributed computing frame-
works such as Ray [23] and Spark [59] parallelize large jobs
for efficient distributed execution. These distributed systems
are programming frameworks used directly in user code,
which can be submitted as a part of the user’s job to cluster
managers. These systems also support an optional "cluster
mode" similar to a cluster manager and we discuss this in §8.

2.3 Motivations and Requirements

Current ML cluster management solutions reveal limitations
in usability and operational efficiency in multi-tenant en-
vironments. SING’s design is motivated by the need for a
simple, stable, and efficient solution for managing shared
ML clusters in research institutions.

An effective solution should address three objectives:

1. Reduce Operational Complexity: Leverage a stable and
low-maintenance architecture to reduce operational work-
load for cluster operators compared to existing solutions.

2. Improve User Accessibility: Provide a clear and accessi-
ble interface that simplifies ML job submission and moni-
toring, reducing the learning curve for users.

3. Enable Fair and Efficient Resource Allocation: En-
sure fair resource allocation to maximize utilization while
maintaining system responsiveness.

SING addresses these requirements with a full-stack ar-
chitecture designed for ML workflows, introducing features
such as multi-format job support, optimized first-come-first-
serve (FCFS) scheduling, and environment caching. SING
aims to create a more stable and user-friendly environment
for shared ML cluster operations.

3 Design and Implementation

SING’s core architecture design follows a four-layer abstrac-
tion to define, construct, and execute user-submitted ML jobs
within a shared ML cluster. As illustrated in Figure 1, SING’s
design is structured as follows:

The Job Profile Layer allows users to define job and envi-
ronment requirements with a self-contained profile syntax,
ensuring unambiguous execution of jobs.

The Adapter Layer is the interface between users and the
cluster, facilitating job submission and monitoring,.

The Scheduler Layer manages resource allocation and job
scheduling, employing an optimized FCFS with a backfill
mechanism to prioritize and utilize resources efficiently.

The Executor Layer is responsible for executing ML jobs
on cluster nodes, featuring network file systems and cus-
tomizable execution backends for scalability.

Design and Operation of Shared Machine Learning Clusters on Campus

Layer 1: Job Profile Layer (83.1)

job_metadata:

8 ickstart ist
{)> ‘name: quickstart_mnis
Ny script:
E. python3 mnist.py --data=/mnt/data/mnist
. configurations:
Job Packing - python=3.6.9
Layer 2: Adapter Layer (§3.2)
User-side SING Command Line Interface (CLI)

Authenticate Submit Interact

Extensions below this layer are transparent to users

SING Cluster Service

Parse

Cluster-side
§§@* Compile :;;15- Monitor
:7 p o i

Layer 3: Scheduler Layer (§3.3)
22 Scheduling Mechanisms
1 [1 Optimized FCFS w/ thresholded backfill

Queuing & . 2. Tidy granularity with power-of-2 allocation
Scheduling

3. Reserved resource for small-scale jobs

Layer 4: Execution Layer (§3.4)

Three Provisioning Objectives:

Lm0 #1 Resource

Compute and Network Isolation

#2 Environment Dependency Installation

Provision #3 File Storage Networked File Systems (Job, User)

Figure 1. SING uses 4-layer architecture to enhance the
overall efficiency and flexibility in operation.

This abstraction offers a key advantage by decoupling the
ML job execution workflow to independent input and output
in each layer, creating a versatile design framework where
different components can be combined to accomplish the
cluster management objective.

3.1 Layer 1: Job Profile Layer

Jobs submitted to SING are defined using job profiles, and an
example showing the syntax of these profiles is in Figure 2.
These profiles consist of the following sections:

1. Metadata and Resource Request: users specify resource
requirements, including the selected resource group, num-
ber of nodes (which can be a range), the number of GPUs
required on each node, and the format of the job code.

2. Job Code: this section points to the entry point of the
user’s job code, which can be a script or a container file.

3. Configurations: users specify the job’s configurations, such
as runtime libraries like CUDA version and programming
dependencies like Python packages.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Feature #1: Job Format Flexibility. SING supports script-
format (common in HPC) and container-format job profiles
simultaneously. Users can specify their preferred format by
indicating it in the job section and providing either an execu-
tion script or a container file (Dockerfile) in the entrypoint
section of the job profile. This versatility in format minimizes
migration costs during job submissions across different com-
puting environments. Subsequently, the job profile is com-
piled into executable scripts by the adapter layer (§3.2) before
being submitted to the scheduler layer (§3.3) for execution.

Comparing to traditional HPC clusters. Having a profile
layer eliminates the need for setting up a server from where
users submit jobs via Slurm toolchains. In traditional HPC
clusters, this server often called a login node, is a common
single point of failure. Some users might unintentionally
execute their job scripts directly on the login node, either for
debugging purposes or due to workflow misunderstandings.
Running scripts locally on the login node can fully occupy
its computing or memory resources, rendering it unrespon-
sive and preventing other users from submitting new jobs.
This can disrupt the system and potentially lead to a cluster-
wide outage. Despite warnings from HPC cluster operation
teams [32, 46], such incidents still happen as they cannot be
completely prevented [15], necessitating manual recovery
by the operation team which can be time-consuming.

Another advantage of using the job profile is its self-
contained and repeatable nature. Users can save and reuse
their job profiles for recurring tasks, simplifying job sub-
mission. Moreover, these profiles can be shared with others
to replicate experiments, fostering collaboration and repro-
ducibility within the research community.

Job Profile Example: quickstart_mnist.conf

-

ijob_metadata:
name: quickstart_minst
resource: sing_gpu_1 # Select target resource group.
nodes: 4 # Peer IPs provided during runtime.
gpu: 2 # Number of GPUs requested per node.
format: script # Job format: script or container.

script: quickstart.sh # The submitted script

container: quickstart.dockerfile # or, a container file.

configurations: # For script-format only.
- python=3.6.9 # Dependencies are configured
- cudatoolkit=11.1.0 # through Conda and bash scripts. |
- pytorch=1.9.0 |

Figure 2. Example job profile where users specify job re-
quirements, code entry point, and configurations.

3.2 Layer 2: Adapter Layer

The adapter layer takes the user’s job profile from the pre-
vious layer and submits it to the ML cluster. It also offers

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Job Profile SING Command Line Interface

User job... res
Slde entrypoint...

JE—— Authenticate Submit Interact
SING Cluster Service SChEd“hf‘g &
Execution

Cluster 8 a?s = [[/
° Dx e - - 9 (rn=o) [fv—o) [Wivi=o)
Side g :7@ «?i

[\ /== =\
Monitor frm=o) [m=o) [r=o)

Parse Compile s s e

Figure 3. Workflow and functions of the adapter layer.

user interfaces for functions like monitoring running jobs,
retrieving output files, and streaming logs.

The adapter layer is referred to as such because it is pro-
grammed against the job schedulers in the layer below. It
abstracts the complexity of the cluster manager’s functionali-
ties and provides a user-friendly interface for job submission
and monitoring.

Our implementation, illustrated in Figure 3, comprises
two components: SING-cli and SING-service, running locally
on user computers and on the cluster, respectively.

SING-cli (SING Command Line Interface), is a local soft-
ware distributed to SING users. It stores cluster configura-
tions, such as the cluster’s IP and login credentials, and con-
nects with the cluster. Beyond authentication, the cli acts as
a thin layer that wraps around the services provided by SING-
service, providing commands that facilitate job submission
and access to other SING-service functionalities.

SING-service operates on a cluster node and receives in-
structions from the cli. When a job is submitted, the service
compiles the job files by parsing the job profile and convert-
ing it into the scheduler’s recognized format. This process
includes mapping configuration parameters and packaging
code files before passing them to the scheduler layer. SING-
service also provides job monitoring functions, such as fetch-
ing job status and accessing output files and logs.

Connection Security. SING-cli uses remote command ex-
ecution over an SSH tunnel to invoke functions in SING-
service. To authenticate users, their public key—created dur-
ing registration—is added to the dedicated cluster node that
runs SING-service. This setup does not allow users to log
in directly to the cluster node, thereby reducing the risk of
unexpected user actions on the node that could disrupt op-
erations (as discussed in §3.1). A more secure approach that
offers better isolation between the client and cluster is to
implement SING-service functions as HTTP APIs, connected
over HTTPS with password authentication. However, we opt
for remote command execution as it offers more flexibility
(e.g., file uploads) with less engineering effort. We discuss
potential security concerns related to this solution in §7.

Kaigiang Xu et al.

We discuss two key features of the adapter layer and pro-
vide details of our implementation as follows.

Feature #2: Multi-format Job Compilation. Job compila-
tion in SING enables jobs in various formats to be trans-
formed into a standardized output script that the backend
can interpret and execute. Since this compilation process
is handled on the cluster side (Figure 3), the same SING-cli
can connect to different clusters running SING-service with-
out requiring user code modifications. This design supports
extensibility across various execution backends. While our
SING implementation uses Slurm [41] as the execution back-
end, community extensions (§6) have enabled integration
with alternative backends—or even multiple backends si-
multaneously based on a routing strategy—without adding
usability burdens on the user side.

For script-format jobs, the SING-service identifies required
dependencies and injects scripts to prepare the environment.
This, for example, includes setting the LD_LIBRARY_PATH to
switch between pre-installed CUDA versions [58] on cluster
nodes and initializing Conda [3] for Python dependencies.
We optimize Conda initialization by caching environments
using MD5 hashes of sorted dependency lists, enabling in-
stant retrieval for recurring jobs with identical requirements.

For container-format jobs, which are self-contained pack-
ages, the job is passed to the scheduler layer for resource
allocation. After that, the compute node invokes container
runtimes (such as Docker or Containerd [8]) to execute the
provided container file directly. Optionally, script-format
jobs can also be encapsulated into a container file to simplify
execution, albeit with an added layer of abstraction.

After compilation, the job is submitted to the specified
resource group and cluster. This layer provides extensibil-
ity by allowing the SING-cli to connect to SING-service on
different computation clusters (varying in location, speed,
or cost) without user code modification. Additionally, the
SING-service compiles the job profile into different output
scripts suitable for its respective cluster.

Feature #3: Interactive Job Monitoring. Many research

projects running on our cluster involve ongoing develop-
ment and exploratory experiments. Users therefore need
to interact with their jobs in real time, especially when de-
bugging or monitoring the training process. Hence, SING
provides the following interactive features.

1. Remote port forwarding. For real-time debugging tools
such as Jupyter Notebook or TensorBoard, SING-service dy-
namically edits port forwarding rules on the cluster gateway
server, which runs HAProxy [17]. This setup exposes the
container’s port through a randomly assigned port on the
gateway. Users can then access the service using the gate-
way’s public IP and the forwarded port. Once the job is
stopped, the executor backend automatically triggers [42]
the removal of the port forwarding rule. Note that this ap-
proach opens a public port on the gateway server, which

Design and Operation of Shared Machine Learning Clusters on Campus

could allow unauthorized access if the service behind the
forwarded port lacks authentication. We discuss this security
risk and a potential solution in §7.

2. Remote SSH access. Users can gain SSH access to the
remote host (either a server or a container) where their job
is running to perform debugging tasks. To facilitate this con-
nection, SING-service generates a one-time SSH key pair
and adds the public key to the authorized keys file on the
remote host. The service then exposes the SSH port of the
remote host on the gateway server using the previously men-
tioned port forwarding function. The private key is securely
transmitted back to SING-cli via the cli-to-service connection
(§3.2). SING-cli then use this private key to establish an SSH
connection to the remote host through the gateway. After
the job stops, both the key pair and the port forwarding rule
are removed.

3. Retrieving log and output files. SING-cli can download or
stream remote files (similar to tail —follow) in the job’s
runtime directory to access output or log.

In practice, to prevent low resource utilization resulting
from remote job debugging, we restrict the usage of remote
functions to jobs that require two or fewer GPUs. This en-
courages users to initially test their jobs with fewer resources
and scale up once the testing phase is complete.

3.3 Layer 3: Scheduler Layer

The scheduling layer is responsible for making decisions on
the allocation of resources. ML cluster scheduling is a popular
research area. However, as many approaches improve cluster
efficiency by evaluating jobs with performance factors such
as estimated job completion time, resource utilization, and
statistical efficiency, they may not be suitable for shared ML
clusters in research institutions because:

e They determine the order of job execution based on opti-
mization algorithms targeting cluster-wide metrics. This
approach may sometimes result in unfair resource alloca-
tion from the perspective of individual users.

e They often require modifications to user code, including
model hyperparameters like batch size, to exploit optimiza-
tion opportunities. In the context of ML research, such
modifications are less desirable, if not unacceptable, as
echoed in recent literature [18].

SING incorporates the following mechanisms to improve
cluster-wide resource utilization while being fair to individ-
ual users, as illustrated in Figure 4. Resource abuse preven-
tion is discussed in §5.3.

Feature #4: Fair FCFS with Backfill. SING’s scheduling ap-
proach is analogous to the way universities manage their
public facilities, recognizing that ML clusters function as
university-wide shared resources. Fairness in this context
means that resource requests are generally processed on a
first-come, first-served (FCFS) basis to ensure equal access
for all users. However, to enhance overall cluster efficiency,

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

of nodes

&R
_0 % Il.l Il.l

of GPUs

. Reserved
Backfill Tidy
FCEs + Mechanism + Granularity + Rser:);{;zs:r

Figure 4. SING’s scheduler layer implements mechanisms
to improve cluster-wide resource utilization.

certain requests may be given higher priority than earlier
ones, as detailed below, in order to improve cluster-wide
resource utilization.

SING uses a scheduling strategy that combines optimized
FCFS with a backfill mechanism, as depicted in Figure 4.
When a job is submitted, it is placed in a queue, awaiting
execution. The scheduler engages in a bin-packing process to
determine if there are sufficient available resources to start
the next job. In cases where the available resources cannot
satisfy the first job in the queue, the backfill mechanism will
help avoid head-of-line blocking due to large jobs in the front
of the queue: it temporally skips the first job and evaluates
the subsequent jobs to identify the ones that can be executed
with available resources.

Next, we introduce strategies that further enhance clus-
ter utilization by minimizing fragmentation and prioritizing
smaller jobs. The usage statistics in §5 validate the effective-
ness of these strategies.

Threshold for Backfilled Requests. In some cases, the
backfill mechanism may lead to the starvation of the first job,
especially if the first job request is large while the subsequent
request is small. To address this, we restrict the total number
of allocated GPUs for backfilled requests with a threshold (in
SING, we set the threshold to the size of the first job request).
Once this limit is reached, priority is given to the first job to
make sure it will be scheduled next. Algorithm 1 illustrates
the pseudocode of this scheduling strategy.

Tidy Granularity. SING accepts two-dimensional resource
requests: the number of nodes and the number of GPUs per
node. To prevent fragmentation in the bin-packing process,
we have established a limited granularity for the quantity of
GPUs in each node type, offering preset choices of 1/2/4/8-
GPU nodes. Additionally, when users request multiple nodes,
they must select nodes of the same type. These predefined
granularities, when carefully scheduled with bin-packing
algorithms [51], can enhance resource utilization as they
minimize small fragments during scheduling. From a user

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Algorithm 1: Optimized FCFS with Backfill

Input:
e Job Queue Q, Backfill Threshold 7
1 begin
/* Decide the next job to run */
2 job = Q.peek()
/* Check the first job in queue */
3 if available(job) then
4 Q.pop()
5 T = Q.peek().GPUs
6 return job
/* Try backfilling jobs */
7 for backfill_job in Q do
8 if available(backfill_job) and
T = backfill_job.GPUs then
/* Reduce backfill threshold */
9 T =T - backfill_job.GPUs
10 return backfill_job
11 end
12 end

perspective, these choices of granularities align well with
typical ML experiment settings (i.e., powers of two). The
allocation of CPU and memory is proportional to the number
of GPUs in each node type, which facilitates data processing
during GPU training. This approach is generally sufficient
based on our operational experience, as our GPU nodes are
equipped with 40-core CPUs and 256GB of memory (which
exceeds the total GPU memory on a node). For tasks that
require only CPU or memory resources, we recommend
using CPU clusters.

Reserved Resource for Small Jobs. Another effective strat-
egy we implemented is the prioritization for smaller jobs (il-
lustrated in Figure 4). We partition some 8-GPU nodes into
1/2/4-GPU nodes with isolated computation and network en-
vironments with SR-IOV [29], which allows a single physical
NIC to appear as multiple virtual NICs with minimal per-
formance loss [22]. These nodes are exclusively allocated to
serve small requests. This strategy offers priority incentives
that encourage users to request fewer resources when they
only need to debug or quickly test for a few epochs, reduc-
ing the waiting time for other users. This optimization also
implicitly resembles the effects of a short-job-first strategy,
which reduces the waiting time for queueing jobs.

Feature #5: Early-Initialization and Caching. When jobs
are queued and awaiting execution, SING accelerates the
bootstrap stage by pre-initializing Conda environments (for
script-format jobs) or building container images (for container-
format jobs) as immutable directories stored in distributed

Kaigiang Xu et al.

network storage. This network storage is accessible to all
nodes (as described in Feature #6 in §3.4).

To further reduce job startup time, SING caches the depen-
dency environment and container images locally on each
node. When a job is started on compute nodes, SING first
checks if the resource is available without accessing the
nodes’ network storage. If not, the environment is fetched
to the local node for job execution and cached there for sub-
sequent executions, unless purged due to local storage space
constraints under the LRU cache replacement policy.

3.4 Layer 4: Execution Layer

The executor layer is where job profiles become instances
and bootstrap for execution, and it provides necessary ar-
chitecture support for parallel computation and resource
isolations for multi-job processing. Figure 5 illustrates the
topology and architecture of SING that supports distributed
job execution. SING utilizes Slurm [41] as the default backend
and this section discuss its capability and our enhancements
to Slurm to make it a better fit for ML cluster management.
§6 discusses a community work that utilizes Kubernetes for
executor backend in SING’s architecture. §8 discusses the
reason why we choose Slurm as default backend.

Stage 1: Job Profile and Submission

resource job entrypoint code & data
request script or container package
local job packaging

A 4

SING-cli

Jjob submission

Stage 2: Compilation & Scheduling
v

compilation

ML job L SING-service

executable

\ / .

workload initialization
manager & scheduler

Interactive
monitoring

Stage 3: Computing queuing &

execution

compute node I | compute node

environment
cache

Stage 4: Network Storage

Job Runtime
Directory
Prioritize Sync

Environments
conda dependencies,
container image

User Directory
Persistent Store

Figure 5. An end-to-end workflow of job processing in SING,
from job submission to execution.

Design and Operation of Shared Machine Learning Clusters on Campus

Feature #6: Distributed Job Bootstrapping. Each cluster
node runs a Slurm agent that manages job processes. For par-
allel jobs spanning multiple nodes, an environment variable
with assigned IPs facilitates peer connections. The agent
executes the compiled job script from the job profile in
the adapter layer (in §3.2), starting the initialized environ-
ment (Conda or container) and calling the job script within
it. This environment is pre-initialized and cached in the net-
work file system, as described in Feature #5 (§3.3).

We deploy a network file system with RDMA support
using GlusterFS [13] for file synchronization across nodes

and to prevent file duplication. There are two user-level file
spaces: the job runtime directory and the user directory. Both
directories are accessible during job runtime or using SING-
cli but offer different Quality of Service (QoS) guarantees.
The user directory provides persistent storage shared across
multiple job submissions, prioritizing stable storage over
synchronization speed. In contrast, the job runtime directory
offers faster storage that only persists for a short period after
job completion unless the user submits a new job. Otherwise,
it is automatically purged.

Feature #7: Heterogeneous Executor Backends. SING’s
executor backend, Slurm, operates under a "controller-agent”
model. In this setup, the controller acts as a puppet master,
managing resource groups, while agents run on compute
nodes to execute jobs. The controller can partition resources
into different groups (e.g., CPU-only, consumer GPU, data-
center GPU), allowing users to specify the cluster and op-
tionally the resource group to meet heterogeneous hardware
requirements, while SING enforces user resource quotas.

Additionally, resources can be added or removed from the
cluster simply by starting or stopping the agent. This model
enables dynamic scaling of resources across the cluster, allow-
ing it to adapt to varying workloads and user demands. Ad-
ditionally, cloud-based compute nodes can be scaled through
an agent running in the cloud, which connects back to the
controller. We utilize a self-built cloud instance image (e.g.,
Amazon Machine Images [2]) that embeds the agent and
starts it automatically at instance boot, to simplify the pro-
cess. This approach ensures scalability and flexibility, adding
additional resources to the cluster while remaining trans-
parent to users. Future implementations may fully automate
scaling operations based on cluster occupancy and cloud
resource budgets.

3.5 SING Implementation

We implement the scheduling and execution layer of SING
based on Slurm [41], which is extended to support the sched-
uling policies in §3.3. We selected Slurm for its popularity
and simplicity in academic cluster management (further dis-
cussion in §8). We note that Kubernetes [50] can provide
similar functionality and can also serve as the executor back-
end for SING, which has been developed in the Kubernetes
community and is discussed in §6.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 2. Breakdown of estimated human efforts for building
the SING solution in a new cluster.

Est. Person-Days

Tasks / Steps
Ground-up Adopt
1. Basic OS and GPU Driver Configs 2 2
2. Cluster Softwares: Slurm and NFS 4 3
3. Integrate SING-cli and -service 8 2
4. Testing & Documentation 3 1

4 Usability and Accessibility

This section discusses the usability of SING’s design from
the perspective of cluster operators and users, reflected by
its operational workload and user experience.

4.1 Operation and Maintenance Cost

Table 2 compares the estimated human effort needed to build
SING from scratch (17 person-days), or adopt the open-source
SING configuration and code (8 person-days). The difference
is mainly due to SING-cli and SING-service development and
figuring out software configurations. See our open-source
plan in §6.

Installing System Software. The effort required for the
initial deployment varies depending on the operation team’s
familiarity with Linux software configurations. For instance,
setting up GlusterFS for the networked file system and Slurm
for the scheduler is relatively straightforward if the team
efficiently understands and follows their well-documented
setup procedures. Meanwhile, they also have a large com-
munity where solutions to most deployment issues can be
readily found.

Service Requests and Maintenance. The operation team’s
day-to-day workload is primarily on responding to user re-
quests and maintaining the cluster’s stability:

e To reduce basic service requests, our team provide clear
job examples under various distribution settings and pro-
gramming frameworks, helping users quickly get started
with these templates. We also outlines detailed steps and
best practices for job debugging. As a result, over the past
12 months, our cluster has seen an average of one service
request for every 940 jobs submitted.

System failures in SING are rare due to the minimalism
in software architecture, which minimizes the risks of
software failure. Hardware and networking issues, such
as network file system delays, are discussed in §5.

4.2 User Experience

Our design strives to improve users experience for ML clus-
ters, yielding several key advantages, as discussed below.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

User-Friendly Features. SING-cli offers a suite of functions
tailored to typical ML research workflows, allowing users
to easily access remote resources. These functions include
remote file uploads/downloads, attaching bash environment,
and remote port forwarding.

Simplified Environment Management. Users no longer
need to maintain two sets of scripts for local and remote
executions. The job profile encapsulates all environment
dependencies as well as scripts to start the ML process, and
the steps to execute jobs locally and remotely are identical.

Documentation. The user documentation for SING offers
a detailed collection of clear and intuitive examples for job
submissions, ranging from basic workflow testing to hy-
brid parallel training. These examples help users to quickly
understand the interface and functionality of SING, provid-
ing easy-to-follow solutions while reducing the operational
team’s workload in addressing user inquiries.

Summary. Cluster operation includes both problem preven-
tion and resolution. We prioritize prevention by adhering to
design principles that reduce architectural complexity and
use foolproof interfaces. For resolution, please see §5.3.

5 Operation and Analysis

We analyze SING’s performance and usage over 2.5 years
to offer insights into academic ML cluster operation. The
cluster consists of 128 Nvidia GTX 3090 GPUs on 16 nodes.

We first analyze cluster-wide trends including temporal
patterns (§5.1) and job-specific characteristics (§5.2). Then,
we discuss the experiences and actions taken to handle re-
source bottlenecks and hardware failures (§5.3). Finally, we
present the schema of the SING cluster trace, a more compre-
hensive trace compared to prior work in §6.

5.1 Usage Statistics: Temporal Patterns

SING exhibited various temporal patterns during operation.
These patterns are instrumental in planning for capacity and
system maintenance schedules. Unless otherwise specified,
the period under review in this section is for the 30 months
from July 2021 to December 2023.

Number of Users. Figure 6 shows periodic surges in new
user registrations for SING, where spikes are visible around
September and February, aligning with the distribution of
email newsletters at the beginning of each semester to intro-
duce new researchers to the platforms. Outside these periods,
user growth is steady and gradual, attributed to word-of-
mouth referrals. Additionally, the data reflects an increasing
trend in new user registrations over time, showing the grow-
ing popularity of the SING within our institution.

Task Submissions. Figure 7a shows the task submission
statistics of SING, demonstrating a consistent growth in task
submissions, with over 200 weekly average submissions. No-
table submission spikes are observed around January 2022,

Kaigiang Xu et al.

Total Users Weekly Active Users
400 150
100
[
200
/_f_/j' 1 T T 50
0 v +
2022 2023 2024
Figure 6. User growth and weekly active users.
Total Tasks Weekly New Tasks

25,000 1
‘ || / 600
15,000 1400
/./'/ 200
5,000

R — e

2022 2023 2024

(a) Number of total tasks and weekly new tasks from 2021 to 2023.

8

100 6
e
S

= 4

% 50

** 2

I, I .

SunMonTue WedThu Fri Sat 0 6 12 18 24

(b) Tasks over a week (c) Tasks over a day

Figure 7. Task submissions over a year in monthly, daily,
and hourly submission patterns.

late April to early May 2022, and late January 2023, possibly
corresponding to periods with paper submission deadlines.

Figure 7b shows a mid-week peak in task submissions, par-
ticularly on Wednesdays, and gradually decreases towards
the weekends, with the lowest on Sundays. Figure 7c il-
lustrates a daily trend where submissions are minimal in
the early morning, gradually increasing and peaking in late
evenings, especially between 10pm through 1am the next day.
This trend may reflect researchers’ late-night work habits
and highlights the importance of a low-maintenance cluster,
given the limited availability of operators during late hours.

GPU Occupancy Patterns. Figure 8 illustrates the GPU oc-
cupancy rate over a busy week, with the x-axis representing
hours from 0 to 167, corresponding to Sunday 0am to Sat-
urday 11pm. During the sampled period, SING experienced
job oversubscription for about 30% of the time, with peaks
lasting around two hours. We calculate the GPU assignment
rate as the sum of assigned GPUs at each hour divided by the
sum of the minimum value between the number of requested
GPUs and the cluster capacity at each hour. This approach
reflects utilization adjusted for demand. SING maintained a
GPU assignment rate of over 96%, reflecting the effectiveness
of our backfilling scheduling mechanism (§3.3). Less than 4%

Design and Operation of Shared Machine Learning Clusters on Campus

of GPU
2004 # Requested — # Allocated SJF

— FCFS

150

Capacity

i

0 50 100 150

100

50

Figure 8. GPU occupancy over a week, from Sunday 0am to
Saturday 11pm (168 hours).

kWh

201

10—

0

0 50 100 150

Figure 9. Cluster-wide power draw over the same time pe-
riod as in Figure 8, showing the GPU power is dominant.

of GPUs are idle during the oversubscription period due to re-
source fragmentation, optimized by pre-defined granularity
and the bin-packing algorithm (§3.3).

Comparing with Alternative Scheduling Policies. Us-
ing the job trace shown in Figure 8, we conducted a mini-
evaluation of alternative scheduling policies to determine
job priorities and compare their performance with SING. We
replay the job trace in a simulator. The simulator functions
as a step-based discrete-time system with a 1-minute granu-
larity, resulting in 10,080 steps for this evaluation. Each step
performs three tasks:

1. Calculate job progress to identify completions.
2. Check the job trace and add new arrivals to the queue.
3. Apply scheduling policy to start new jobs.

We compared two baseline policies: (1) the First-Come,
First-Served (FCFS) policy, which is the default in Slurm, and
(2) the Short-Job-First (SJF) policy used in Lucid [18], where
we provided the exact running time to simulate an ideal
scenario. Like in SING, this evaluation did not include job
resource scaling or preemption. Additionally, all jobs were
subject to a 24-hour rule (§5.3), consistent with the policy
applied in SING from which the job trace was collected.

For the evaluation metrics, we examined job occupancy
rates and queueing times. The GPU assignment times for
SING, FCFS, and SJF were 96%, 75.1%, and 96.5%, respectively,
as illustrated in Figure 8. The average queueing times for
SING, FCFS, and SJF were 0.81, 1.32, and 0.64 hours, respec-
tively. SING outperformed FCFS due to its backfill mechanism,
while SJF performed better than SING in reducing waiting
times (note that SING’s dedicated resource pool for small jobs

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

contributes to the low average queueing time). However, in
terms of tail (maximum) queueing times, SING, FCFS, and
SJF recorded 7.2, 7.4, and 10.2 hours, respectively, indicating
that SJF may lead to starvation for longer jobs.

Power Consumption Metrics. Figure 9 illustrates the
power consumption over the same time frame as the GPU
occupancy graph. Max power draw is crucial for cluster plan-
ning. The primary reasons for the remaining differences are
as follows: (1) the base power draw, which includes the idle
power of the CPU, GPU, and other components, is relatively
constant and independent of the GPU occupancy rate; and
(2) the GPU utilization rate also influences power draw [57],
meaning that two jobs occupying the same number of GPUs
may exhibit different power consumption if one job is more
computationally intensive than the other.

5.2 Usage Statistics: Job-level Characteristics

We present job-level characteristics of how long jobs run,
how long they wait in the queue, and how efficiently they
use resources, collected during the operation of SING.

Job Running-Time. Figure 10a illustrates the job durations
within the GPU cluster. The majority of job lengths fall be-
low 2 hours or between 6 to 11 hours. This pattern is a result
of both user preferences and our scheduling approach. As
discussed in §3.2, SING supports interactive usage of clus-
ter resources, such as port forwarding and remote bash ac-
cess, but restricts these features to smaller job requests. This
encourages users to initially debug their jobs with smaller
resource requests. During peak hours, SING automatically
imposes a maximum runtime of 24 hours per submission to

10%

5%

Percentage (%)

0%
0 5 10 15 20

Running Time (h)

(a) Distribution of job run-times in the GPU cluster, with significant
clusters observed at 1-2 hours and 8-11 hours.

100% 100%
S
7 50% 50%
@]
0% 0%
0 6 9 25% 50% 75%

3
Queuing Time (h) Queuing / Total

(b) Queuing-Time Distribution (c) Queuing / Run-Time %

Figure 10. Analysis of job run-times (a) and queuing times
(b and c) in the GPU cluster, illustrating the distribution of
job durations and queuing times.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

ensure fair usage (§5.3). Users with longer-duration needs
are advised to checkpoint their jobs around the 12-hour mark
and submit a new job to continue after checkpointing. These
mechanisms explain the prevalence of jobs running for less
than 2 hours and between 6 to 11 hours.

Job Queuing-Time. Figures 10b and 10c displays the cumu-
lative distribution function (CDF) of job queuing times in
hours and the queuing time as a percentage of the total job
time. These figures highlight that over 40% of jobs have no
waiting time, and more than 90% of jobs wait less than 1 hour
or 10% of their total runtime. These statistics are influenced
by SING’s design. Short jobs receive prioritized allocation
with dedicated resource and backfilling mechanism [54] to
improve cluster-wide efficiency. Longer jobs are required to
be checkpointed within 24 hours and resubmitted to prevent
excessive occupation during peak hours.

Job Sizes Distribution. Figure 11 shows the top 10 job sizes
by resource requests, with about 40% being small jobs re-
questing fewer than four GPUs. This is influenced by SING’s
design, which favors smaller jobs by prioritizing their ex-
ecution (§3.3) and limits interactive debugging tools (§3.2)
to only small jobs. This approach motivates users to start
with smaller resource requests for initial testing and debug-
ging, enhancing overall resource utilization. Additionally, we
make note that job sizes are restricted to powers of two (§3.3).
This restriction aids in reducing resource fragmentation in
the scheduling’s bin-packing process and does not conflict
with typical ML research experiment settings.

20

10

% of Tasks

-1 1-2 14 1-8 2-2 2-4 2-8 44 48 84

Figure 11. Distribution of job sizes, measured by the number
of GPUs requested (e.g., 2-4 is two nodes with 4 GPUs each).

100% 100%
S
o 1-node 1-node
8 >0% == 2-node >0% == 2-node
4-node 4-node
= 8-node == 8-node
0% 0%
50% 100% 50% 100%
Utilizations (%) Utilizations (%)
(a) GPU Utilization (b) GPU Memory Util.

Figure 12. CDFs of job-level GPU and memory utilization,
illustrating resource consumption across various job sizes
(i.e., number of nodes requested).

Kaigiang Xu et al.

GPU Utilization and Memory Utilization. Figure 12 il-
lustrates GPU and GPU memory utilization based on the
number of nodes requested by jobs. The utilization statistics
only account for periods when a GPU is occupied. Gener-
ally, as the number of nodes in a job increases, its utilization
decreases, suggesting possible synchronization overheads.
For 8-node jobs, the average GPU utilization is 25% and the
average GPU memory utilization is 15%. This may indicate
that communication-efficient training methods may not be
widely adopted in current ML experiments.

Table 3. Summary of issues and types of solutions.

Type System Health Issues Type of Solutions

Resource Excessive Storage Usage Policy Enforcement
Resource Low GPU Utilization User Guidance
Resource Long Job Running Time Policy Enforcement

Failure Network File System Delay Incidents Handling

Failure System Configuration Lost Incidents Handling

5.3 System Availability & Maintenance

This section shares our operational experiences with SING.
In Table 3, we summarize the actions that address availability
challenges into three types: user guidance, policy enforce-
ment, and specific incident handling.

5.3.1 Resource Bottlenecks. Running into resource bot-
tlenecks and limitations is the top feedback we hear from
cluster users. We employ the following mechanism to pro-
mote fair usage of resources.

Efficient Storage Usage. Training ML models often involves
accessing large model parameters and datasets. While we
have over 1PB storage space available, the rapid accumula-
tion of files from a large user base can exhaust our disk space.
To ensure efficient storage utilization, we have implemented
the following guidance and policies:

e Public Dataset Directory. In addition to individual user
directories, we create a public directory where commonly
used large datasets [20] are stored. Users can soft link these
datasets directly to their directories, removing the need
for duplication in downloads or copies. This approach not
only prevents duplicate files but also saves download time
and bandwidth.

e File Expiration Policy. Some users store large files in their
directories that are not immediately necessary for their
job. To free up storage space and promote responsible
resource usage, we implement a file expiration policy:
files that have not been accessed for more than 60 days
are subject to deletion. To prevent accidental data loss,
this expiration process is not real-time: We initiate the
removal process at the beginning of each month and send
email notifications seven days prior to deletion.

Design and Operation of Shared Machine Learning Clusters on Campus

GPU Utilization Monitoring. We closely monitor GPU uti-
lization in SING to identify cases of underutilized resources,
which are often caused by non-computation-intensive tasks,
inefficient job implementations, or interactive usage (only
allowed on small nodes). Although we do not immediately
intervene, we collect data and send email notifications to
users with significantly low GPU utilization, and also offer
help for job optimization when needed.

Job Running Time Limit. In SING, we limit job running
time to 24 hours during peak times, defined as when there
is a pending job queued for over an hour (other definitions
may apply here). Users requiring longer runtimes should use
checkpoints and resubmit their jobs. Experienced users can
automate this process for continuous execution.

This policy is also analogous to the way universities man-
age their public resources, similar to borrowing a library
book: you need to return it after a certain period, but you
can re-borrow if it is not reserved by someone else. The pol-
icy is in place to prevent excessively long or unattended jobs
and ensure fair allocation, particularly during peak periods.

5.3.2 Incidents Handling. We share lessons and recom-
mendations from unexpected incidents.

Network File System Delay. We observed substantial de-
lays and inconsistencies in the network file system during
peak periods of concurrent remote I/O, impacting job ini-
tialization and causing runtime errors. We addressed this
issue by switching to RDMA connections for the network
file system. Users are also advised to utilize collective com-
munications directly over the network and avoid file syn-
chronization during job execution.

System Configuration Lost Due to Hardware Upgrade.
While upgrading the physical network interface cards (NICs)
in SING, we encountered an issue due to the tight coupling
of the container’s PCI-E setting and specific NICs. When
we switched NICs, it triggered a failure that rendered the
container inoperable. We could not directly modify the PCI-E
setting inside of the container to use the new NIC because
the container was not able to start at all. In the end, we spent
about 3 days (as per Table 2) recreating the environment.

6 SING Open Source

This paper represents our ongoing effort aimed at improving
the management of shared ML clusters in academic insti-
tutions. Since SING is currently deployed in a production
cluster, we are unable to fully explore all potential design
choices and optimization strategies.

To facilitate the research and operations of similar infras-
tructures, we provide SING’s source code, configurations,
and our cluster’s job traces as open-source resources [48].
Researchers interested in hands-on exploration of SING are
welcome to access our on-premise deployment hosted at [49].

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Job Trace. The SING trace offers more detailed job charac-
teristics and runtime measurements compared to previous
traces like Microsoft Philly [21] and Alibaba PAI [55].

e Job Submission History (36 months): (D timestamps
at job submission, start, and completion;) resource re-
quests; @ assigned node IDs; (@ list of software dependen-
cies (indicative of the ML model/framework used). (5) user
name and job name (anonymized through hashing, yet still
useful for inferring relationships between jobs, such as
resubmissions);

e Node Status (aggregated for every 5/10/30 minutes):
(D node ID; (2) average/maximum CPU and host memory
utilization rates; 3) average/maximum GPU and memory
utilization rates; @ inbound/outbound traffic in bytes; &)
networked file storage IO in bytes.

e Node Specifications: (D Node ID; @ GPU model; 3
number of GPUs; (4 total memory and other hardware
specifications.

The italicized items are unique data points that are not
available in previous traces.

Software Stack. Our software stack includes the source code
and configuration scripts for the cluster workload manager,
scheduler, and monitoring tools. This includes:

e SING-cli and SING-service (§3.2) code and makefiles.
o Scheduler implementation (§3.3) as a Slurm plugin.
e Compute node (§3.4) configs (e.g., SR-IOV, GlusterFS).

Executor Backend Extension in Kubernetes Commu-
nity. SING’s execution layer is designed to be extensible,
enabling support for new cluster managers, with Slurm as
the default. Recently, developers from DaoCloud [9], a lead-
ing Kubernetes contributor and software vendor, submitted
a merge request to SING’s open-source repository [12]. This
update adds support for job execution via Kubernetes and
ports the scheduler to use the Kubernetes API. The develop-
ment was presented in a report at KubeCon 2024 [31], a Linux
Foundation community event, as a step toward integrating
cloud-native infrastructure with AL

7 Limitations
SING’s design has the following known limitations:

Resource Isolation. Slurm isolates resources assigned to
different jobs on the same host using Linux cgroups [5]. We
currently depend on Slurm’s built-in mechanisms for isolat-
ing resources assigned to various jobs. For container-format
jobs, the container runtime is also invoked by Slurm within
this isolation mechanism. The performance and security im-
plications—specifically, whether user resources are entirely
separated—require further research.

Connection Between SING-cli and SING-service. Cur-

rently, SING-cli establishes a connection to SING-service via
SSH to execute remote commands. The user’s SSH public

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

key is added to the host running SING-service, associated
with a new Linux user created during registration. While
this connection is secure, there remains a potential vulner-
ability where a malicious user could exploit it to execute
unauthorized commands on the SING-service host. Although
we have restricted user permissions on the host system to al-
low only specific operations (such as invoking SING-service),
a more secure approach would be to expose SING-service
functionalities through a secure API with authentications.

Port Forwarding for User Jobs. To enable users to ac-
cess interactive services (e.g., TensorBoard) running within
their jobs, we employ port forwarding on the cluster gate-
way (§3.2). This approach exposes a port on the SING-service
host, which may allow unauthorized access if the service
lacks authentication. A more secure alternative is utilizing
SSH tunneling [45]. This method creates a secure tunnel
between the job host and the user’s local machine via the
gateway, restricting access exclusively to the user.

Cluster Failure. SING does not automatically recover from
cluster failures, such as node failures. When a node fails,
it and any associated user jobs become disconnected from
the cluster, and require manual recovery by the cluster op-
erator. Consequently, the job loses progress (up to the last
checkpoint) and must be resubmitted.

8 Related Work and Discussion

We discuss the distributed frameworks and schedulers for
ML workloads. SING can extend with these capabilities, lever-
aging advancements in storage, networking, and hardware
for efficient, flexible cluster management.

Distributed Computing Frameworks. Distributed com-
puting frameworks such as Ray [23] and Spark [59] perform
computations at a granular level, allowing them to parallelize
large jobs for efficient distributed execution. For example,
Ray employs an actor and task-based model for more precise
task management and asynchronous execution. These frame-
works are integrated directly into user code, and submitted as
part of the user’s job to cluster managers. We note that these
frameworks can optionally operate in cluster mode [35, 44],
functioning similarly to cluster managers by managing and
allocating cluster resources to jobs. However, when running
in cluster mode, submitted jobs need to use their compu-
tation APIs. This approach differs from traditional cluster
managers like Slurm, Kubernetes, or SING, which allow users
to submit code using any programming framework.

Cluster Schedulers. Cluster schedulers for ML, including
the state-of-the-art Pollux [34] and Sia [47], focus on job
scheduling to improve cluster-wide performance such as
job completion time. These schedulers can be integrated
into cluster managers like Slurm, Kubernetes, and SING to
manage the entire ML job lifecycle. However, as discussed
in our scheduler design in §3.3, SING generally processes

Kaigiang Xu et al.

requests in a first-come, first-served (FCFS) manner to ensure
equal access for any individual users.

ML System Optimizations. SING is extensible to lever-
age advancements in system optimizations for ML, such as
faster distributed storage [33] and more efficient network-
ing [4, 53, 61]. These optimizations typically operate at layers
orthogonal to SING and can enhance ML job performance
transparently. Additionally, SING’s scheduling policies can
be extended to accommodate user-defined requirements or
job profiling information. This will enable SING to more effec-
tively optimize job placement across heterogeneous nodes,
including those with specialized hardware (e.g., TPU [14]
and FPGA [19, 60]), as well as in geographically distributed
environments (§3.4).

Using Slurm as Executor Backend. Slurm, originally de-
signed for MPI applications in scientific computing, is valued
for its simplicity and performance. While the MPI model has
gained less focus with the rise of big data and internet ser-
vices, ML training jobs share system-level similarities with
MPI, leveraging advanced MPI techniques [25, 43]. As de-
scribed in this paper, by adding ML workflow features to
Slurm, we leverage Slurm’s architecture and extend it to
manage shared ML clusters. Kubernetes can also serve as
the executor backend (§6).

9 Conclusion

This paper addresses the pressing challenges faced by uni-
versities worldwide in effectively managing shared GPU
clusters for ML research. Our experience with the design
and operation of SING, a campus ML cluster manager, offers
an operation-efficient solution, reducing the deployment and
maintenance burden on operations teams while achieving
high resource utilization and user satisfaction.

Acknowledgments

We thank our shepherd, Malte Schwarzkopf, and the anony-
mous reviewers from ASPLOS 2025, as well as reviewers
from our previous submissions, for their valuable feedback.
We also thank the Kubernetes community contributors, Pe-
ter Pan (@panpan0000) and Xiao Zhang (@wawa0210) from
DaoCloud [9], for their insightful discussions and valuable
contributions to the implementation of SING.

SING was developed, deployed, and operated on the TACC
cluster [49] at The Hong Kong University of Science and
Technology. The statistics and analysis reported in this paper
are also based on SING’s deployment and operation on TACC.
An arXiv paper [56] detailing the TACC architecture, which
includes a bottom-up approach to efficient AI computing
with networking, frameworks, and algorithms, forms the
foundation and inspiration of this work.

This work is supported in part by the Hong Kong RGC
TRS T41-603/20R, GRF 16213621, NSFC 62062005, 62402407.
Kai Chen is the corresponding author.

Design and Operation of Shared Machine Learning Clusters on Campus

References

(1]

—
w
—

[13]

[14

flams!

[15]

[16]

[17]

Mohammad Alizadeh, Albert G. Greenberg, David A. Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. 2010. Data center TCP (DCTCP). In Proceedings of the ACM
SIGCOMM 2010 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, New Delhi, India, August
30 -September 3, 2010. ACM, 63-74. https://doi.org/10.1145/1851182.
1851192

Amazon Web Services 2024. Amazon Machine Images in Amazon EC2.
Retrieved December 13, 2024 from hhttps://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/AMIs.html

Anaconda. 2024. User guide - conda documentation. Retrieved Decem-
ber 13, 2024 from https://docs.conda.io/projects/conda/en/latest/user-
guide/index.html

Wei Bai, Kai Chen, Hao Wang, Li Chen, Dongsu Han, and Chen Tian.
2015. Information-Agnostic Flow Scheduling for Commodity Data
Centers. In 12th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 15, Oakland, CA, USA, May 4-6, 2015. USENIX
Association, 455-468. https://www.usenix.org/conference/nsdi15/
technical-sessions/presentation/bai

Bill Brophy, Martin Perry, Moe Jette, Yiannis Georgiou, and Matthieu
Hautreux. 2014. Slurm Processes Isolation. Retrieved December 13,
2024 from https://slurm.schedmd.com/SUG14/process_isolation.pdf
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot
Learners. In Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual. https://proceedings.neurips.cc/
paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a- Abstract.html
Kai Chen, Ankit Singla, Atul Singh, Kishore Ramachandran, Lei Xu,
Yueping Zhang, Xitao Wen, and Yan Chen. 2012. OSA: An Optical
Switching Architecture for Data Center Networks with Unprecedented
Flexibility. In Proceedings of the 9th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2012, San Jose, CA, USA,
April 25-27, 2012. USENIX Association, 239-252. https://www.usenix.
org/conference/nsdi12/technical-sessions/presentation/chen_kai
Containerd 2024. An industry-standard container runtime with an
emphasis on simplicity, robustness and portability. Retrieved December
13, 2024 from https://containerd.io/

DaoCloud. 2024. https://github.com/daocloud.

Docker. 2024. Dockerfile overview. Retrieved December 13, 2024 from
https://docs.docker.com/build/concepts/dockerfile/

Paul Edmon. 2022. Cluster Fragmentation. Retrieved December 13, 2024
from https://www.rc.fas.harvard.edu/blog/cluster-fragmentation/
GitHub 2024. Github Pull Request: Submit kubernetes job without
changing tuxiv.conf format. — Retrieved December 13, 2024 from
https://github.com/turingaicloud/tcloud-sdk/pull/2

GlusterFS. [n.d.]. Gluster Documentation. Retrieved December 13,
2024 from https://docs.gluster.org/en/main/

Google. [n.d.]. Get started | Cloud TPU | Google Cloud. Retrieved De-
cember 13, 2024 from https://cloud.google.com/tpu/docs/quick-starts
Google Groups. 2022. What is an easy way to prevent users from running
programs on the master/login node. Retrieved December 13, 2024 from
https://groups.google.com/g/slurm-users/c/HKMTjPQN9I0

Raz Haleva. 2021. The Challenges of Sharing GPUs and How to Solve
Them. Retrieved December 13, 2024 from https://developer.hpe.com/

blog/the-challenges-of-sharing-gpus-and-how-to-solve-them/
HAProxy 2024. HAProxy, The Reliable, High Performance TCP/HTTP

Load Balancer. Retrieved December 13, 2024 from https://www.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

haproxy.org/

Qinghao Hu, Meng Zhang, Peng Sun, Yonggang Wen, and Tianwei
Zhang. 2023. Lucid: A Non-intrusive, Scalable and Interpretable
Scheduler for Deep Learning Training Jobs. In Proceedings of the
28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 2, ASPLOS 2023,
Vancouver, BC, Canada, March 25-29, 2023. ACM, 457-472. https:
//doi.org/10.1145/3575693.3575705

Qijing Huang, Dequan Wang, Zhen Dong, Yizhao Gao, Yaohui Cai, Tian
Li, Bichen Wu, Kurt Keutzer, and John Wawrzynek. 2021. CoDeNet: Ef-
ficient Deployment of Input-Adaptive Object Detection on Embedded
FPGAs. In FPGA ’21: The 2021 ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, Virtual Event, USA, February 28 -
March 2, 2021. ACM, 206-216. https://doi.org/10.1145/3431920.3439295
Hugging Face. 2024. Datasets - Hugging Face. Retrieved December 13,
2024 from https://huggingface.co/datasets?sort=most_rows
Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie
Qian, Wencong Xiao, and Fan Yang. 2019. Analysis of Large-Scale
Multi-Tenant GPU Clusters for DNN Training Workloads. In Proceed-
ings of the 2019 USENIX Annual Technical Conference, USENIX ATC
2019, Renton, WA, USA, July 10-12, 2019. USENIX Association, 947-960.
https://www.usenix.org/conference/atc19/presentation/jeon
Microsoft 2024. Overview of Single Root I/O Virtualization (SR-
I0V). https://learn.microsoft.com/en-us/windows-hardware/drivers/
network/overview-of-single-root-i-o-virtualization--sr-iov-.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I. Jordan, and Ion Stoica. 2018. Ray: A Distributed Framework
for Emerging Al Applications. In 13th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA,
October 8-10, 2018. USENIX Association, 561-577. https://www.usenix.
org/conference/osdi18/presentation/nishihara

Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar
Phanishayee, and Matei Zaharia. 2020. Heterogeneity-Aware Clus-
ter Scheduling Policies for Deep Learning Workloads. In 14th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2020, Virtual Event, November 4-6, 2020. USENIX Association,
481-498. https://www.usenix.org/conference/osdi20/presentation/
narayanan-deepak

NVIDIA 2020. Overview of NCCL - NCCL documentation. Retrieved
December 13, 2024 from https://docs.nvidia.com/deeplearning/nccl/
user-guide/docs/overview.html

NVIDIA 2024. About CUDA | NVIDIA Developer. Retrieved December
13, 2024 from https://developer.nvidia.com/about-cuda
NVIDIA. 2024. Data Center Networking Concepts.
December 13, 2024 from https://docs.nvidia.com/networking-
ethernet-software/guides/EVPN-Network-Reference/Data-Center-
Networking-Concepts/

NVIDIA 2024. NVIDIA Solutions for Higher Education and Research.
Retrieved December 13, 2024 from https://www.nvidia.com/en-us/
industries/higher-education-research/

NVIDIA 2024. Single Root IO Virtualization (SR-IOV) - NVIDIA Docs. Re-
trieved December 13, 2024 from https://docs.nvidia.com/networking/
display/mInxofedv24010331/single+root+io+virtualization+(sr-iov)
Michael Packard, Joe Stubbs, Justin A. Drake, and Christian Garcia.
2021. Real-World, Self-Hosted Kubernetes Experience. In PEARC °21:
Practice and Experience in Advanced Research Computing, Boston, MA,
USA, July 18-22, 2021. ACM, 16:1-16:5. https://doi.org/10.1145/3437359.
3465603

Peter Pan and Kaigiang Xu. 2024. Breaking Boundaries: TACC as an
Unified Cloud-Native Infra for AI + HPC. Retrieved December 13,
2024 from https://www.classcentral.com/course/youtube-breaking-
boundaries-tacc-as-an-unified-cloud-native-infra-for-ai-hpc-peter-
pan-kaiqiang-xu-312983

Retrieved

https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/1851182.1851192
hhttps://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
hhttps://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.conda.io/projects/conda/en/latest/user-guide/index.html
https://docs.conda.io/projects/conda/en/latest/user-guide/index.html
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/bai
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/bai
https://slurm.schedmd.com/SUG14/process_isolation.pdf
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/chen_kai
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/chen_kai
https://containerd.io/
https://github.com/daocloud
https://docs.docker.com/build/concepts/dockerfile/
https://www.rc.fas.harvard.edu/blog/cluster-fragmentation/
https://github.com/turingaicloud/tcloud-sdk/pull/2
https://docs.gluster.org/en/main/
https://cloud.google.com/tpu/docs/quick-starts
https://groups.google.com/g/slurm-users/c/HKMTjPQN9l0
https://developer.hpe.com/blog/the-challenges-of-sharing-gpus-and-how-to-solve-them/
https://developer.hpe.com/blog/the-challenges-of-sharing-gpus-and-how-to-solve-them/
https://www.haproxy.org/
https://www.haproxy.org/
https://doi.org/10.1145/3575693.3575705
https://doi.org/10.1145/3575693.3575705
https://doi.org/10.1145/3431920.3439295
https://huggingface.co/datasets?sort=most_rows
https://www.usenix.org/conference/atc19/presentation/jeon
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-single-root-i-o-virtualization--sr-iov-
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-single-root-i-o-virtualization--sr-iov-
https://www.usenix.org/conference/osdi18/presentation/nishihara
https://www.usenix.org/conference/osdi18/presentation/nishihara
https://www.usenix.org/conference/osdi20/presentation/narayanan-deepak
https://www.usenix.org/conference/osdi20/presentation/narayanan-deepak
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/overview.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/overview.html
https://developer.nvidia.com/about-cuda
https://docs.nvidia.com/networking-ethernet-software/guides/EVPN-Network-Reference/Data-Center-Networking-Concepts/
https://docs.nvidia.com/networking-ethernet-software/guides/EVPN-Network-Reference/Data-Center-Networking-Concepts/
https://docs.nvidia.com/networking-ethernet-software/guides/EVPN-Network-Reference/Data-Center-Networking-Concepts/
https://www.nvidia.com/en-us/industries/higher-education-research/
https://www.nvidia.com/en-us/industries/higher-education-research/
https://docs.nvidia.com/networking/display/mlnxofedv24010331/single+root+io+virtualization+(sr-iov)
https://docs.nvidia.com/networking/display/mlnxofedv24010331/single+root+io+virtualization+(sr-iov)
https://doi.org/10.1145/3437359.3465603
https://doi.org/10.1145/3437359.3465603
https://www.classcentral.com/course/youtube-breaking-boundaries-tacc-as-an-unified-cloud-native-infra-for-ai-hpc-peter-pan-kaiqiang-xu-312983
https://www.classcentral.com/course/youtube-breaking-boundaries-tacc-as-an-unified-cloud-native-infra-for-ai-hpc-peter-pan-kaiqiang-xu-312983
https://www.classcentral.com/course/youtube-breaking-boundaries-tacc-as-an-unified-cloud-native-infra-for-ai-hpc-peter-pan-kaiqiang-xu-312983

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Princeton Research Computing. [n. d.]. Top 10 Mistakes to Avoid on the
Research Computing Clusters. Retrieved December 13, 2024 from https:
//researchcomputing.princeton.edu/get-started/mistakes-avoid
Yingjin Qian, Marc-André Vef, Patrick Farrell, Andreas Dilger, Xi
Li, Shuichi Thara, Yinjin Fu, Wei Xue, and André Brinkmann. 2024.
Combining Buffered I/0 and Direct I/O in Distributed File Systems. In
22nd USENIX Conference on File and Storage Technologies, FAST 2024,
Santa Clara, CA, USA, February 27-29, 2024. USENIX Association, 17-33.
https://www.usenix.org/conference/fast24/presentation/qian

Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie
Neiswanger, Qirong Ho, Hao Zhang, Gregory R. Ganger, and Eric P.
Xing. 2021. Pollux: Co-adaptive Cluster Scheduling for Goodput-
Optimized Deep Learning. In 15th USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI 2021, July 14-16, 2021.
USENIX Association. https://www.usenix.org/conference/osdi21/
presentation/qiao

Ray. [n.d.]. Ray Clusters Overview. Retrieved December 13, 2024 from
https://docs.ray.io/en/latest/cluster/getting-started.html

Reddit 2021. Research Group GPU Sharing: some open-
source tool. Retrieved December 13, 2024 from https:
//www.reddit.com/r/MachinelLearning/comments/k07jn9/d_
research_group_gpu_sharing_some_opensource_tool/

Reddit 2022. What is the best way to manage GPU server
for multi-users? Retrieved December 13, 2024 from
https://www.reddit.com/r/MachineLearning/comments/ve987y/
d_what_is_the_best_way_to_manage_gpu_server_for/

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser,
and Bjérn Ommer. 2022. High-Resolution Image Synthesis with Latent
Diffusion Models. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022.
IEEE, 10674-10685. https://doi.org/10.1109/CVPR52688.2022.01042
Giovanni Rosa, Federico Zappone, Simone Scalabrino, and Rocco
Oliveto. 2024. Fixing Dockerfile smells: an empirical study. Empir.
Softw. Eng. 29, 5 (2024). https://doi.org/10.1007/S10664-024-10471-7
Run:ai 2024. Simplify GPU Sharing in Multi-GPU Environments. Re-
trieved December 13, 2024 from https://www.run.ai/guides/multi-
gpu/simplify-gpu-sharing-part-1

SchedMD 2021. Slurm Workload Manager - Overview. Retrieved
December 13, 2024 from https://slurm.schedmd.com/overview.html
SchedMD 2024. Slurm Workload Manager - strigger. Retrieved Decem-
ber 13, 2024 from https://slurm.schedmd.com/strigger.html
Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy
distributed deep learning in TensorFlow. CoRR abs/1802.05799 (2018).
arXiv:1802.05799 http://arxiv.org/abs/1802.05799

Spark. [n.d.]. Spark - Cluster Mode Overview. Retrieved December 13,
2024 from https://spark.apache.org/docs/latest/cluster-overview.html
SSH Academy [n.d.]. SSH Tunneling: Client Command and Server
Configuration. Retrieved December 13, 2024 from https://www.ssh.
com/academy/ssh/tunneling-example

Stanford Research Computing Center. 2024. Running Jobs - Sherlock.
Retrieved December 13, 2024 from https://www.sherlock.stanford.edu/
docs/user-guide/running-jobs/

Suhas Jayaram Subramanya, Daiyaan Arfeen, Shouxu Lin, Aurick
Qiao, Zhihao Jia, and Gregory R. Ganger. 2023. Sia: Heterogeneity-
aware, goodput-optimized ML-cluster scheduling. In Proceedings of the
29th Symposium on Operating Systems Principles, SOSP 2023, Koblenz,
Germany, October 23-26, 2023. ACM, 642-657. https://doi.org/10.1145/
3600006.3613175

TACC Authors. 2024. Open Source Artifacts: TACC. Retrieved Decem-
ber 13, 2024 from https://tacc.ust.hk/#opensource

TACC Authors. 2024. Scalable Al Infrastructure Designed for Evolving
Machine Learning Research. Retrieved December 13, 2024 from https:
//tacc.ust.hk/

The Kubernetes Authors 2024. Overview | Kubernetes. Retrieved De-
cember 13, 2024 from https://kubernetes.io/docs/concepts/overview/

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Kaigiang Xu et al.

Vladimir Vondrus. 2022. Zero-waste single-pass packing of power-of-two
textures — blog.magnum.graphics. Retrieved December 13, 2024 from
https://blog.magnum.graphics/backstage/pot-array-packing/

Hao Wang, Han Tian, Jingrong Chen, Xinchen Wan, Jiacheng Xia,
Gaoxiong Zeng, Wei Bai, Junchen Jiang, Yong Wang, and Kai Chen.
2024. Towards Domain-Specific Network Transport for Distributed
DNN Training. In 21st USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2024, Santa Clara, CA, April 15-17, 2024.
USENIX Association. https://www.usenix.org/conference/nsdi24/
presentation/wang-hao

Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang Zeng, Wenxue Li,
Xinchen Wan, Peng Xie, Tao Feng, Ke Cheng, Xiongfei Geng, Tianhao
Wang, Weicheng Ling, Kejia Huo, Pingbo An, Kui Ji, Shideng Zhang,
Bin Xu, Ruiqing Feng, Tao Ding, Kai Chen, and Chuanxiong Guo.
2023. SRNIC: A Scalable Architecture for RDMA NICs. In 20th USENIX
Symposium on Networked Systems Design and Implementation, NSDI
2023, Boston, MA, April 17-19, 2023. USENIX Association, 1-14. https:
//www.usenix.org/conference/nsdi23/presentation/wang-zilong
Ahuva Mu’alem Weil and Dror G. Feitelson. 2001. Utilization, Pre-
dictability, Workloads, and User Runtime Estimates in Scheduling the
IBM SP2 with Backfilling. IEEE Trans. Parallel Distributed Syst. 12, 6
(2001), 529-543. https://doi.org/10.1109/71.932708

Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang,
Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaaS
in the Wild: Workload Analysis and Scheduling in Large-Scale Het-
erogeneous GPU Clusters. In 19th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2022, Renton, WA, USA, April
4-6, 2022. USENIX Association, 945-960. https://www.usenix.org/
conference/nsdi22/presentation/weng

Kaigiang Xu, Xinchen Wan, Hao Wang, Zhenghang Ren, Xudong Liao,
Decang Sun, Chaoliang Zeng, and Kai Chen. 2021. TACC: A Full-stack
Cloud Computing Infrastructure for Machine Learning Tasks. CoRR
abs/2110.01556 (2021). arXiv:2110.01556 https://arxiv.org/abs/2110.
01556

Jie You, Jae-Won Chung, and Mosharaf Chowdhury. 2023. Zeus: Un-
derstanding and Optimizing GPU Energy Consumption of DNN Train-
ing. In 20th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2023, Boston, MA, April 17-19, 2023. USENIX
Association, 119-139. https://www.usenix.org/conference/nsdi23/
presentation/you

Yushan. 2024. Managing Multiple CUDA + cuDNN In-
stallations. Retrieved December 13, 2024 from https:
//medium.com/@yushantripleseven/managing-multiple-cuda-
cudnn-installations-ba9cdc5e2654

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and
ITon Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant Ab-
straction for In-Memory Cluster Computing. In Proceedings of the 9th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2012, San Jose, CA, USA, April 25-27, 2012. USENIX Associa-
tion, 15-28. https://www.usenix.org/conference/nsdi12/technical-
sessions/presentation/zaharia

Junxue Zhang, Xiaodian Cheng, Wei Wang, Liu Yang, Jinbin Hu, and
Kai Chen. 2023. FLASH: Towards a High-performance Hardware
Acceleration Architecture for Cross-silo Federated Learning. In 20th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2023, Boston, MA, April 17-19, 2023. USENIX Association, 1057~
1079. https://www.usenix.org/conference/nsdi23/presentation/zhang-
junxue

Junxue Zhang, Chaoliang Zeng, Hong Zhang, Shuihai Hu, and Kai
Chen. 2022. LiteFlow: towards high-performance adaptive neural
networks for kernel datapath. In SIGCOMM °22: ACM SIGCOMM 2022
Conference, Amsterdam, The Netherlands, August 22 - 26, 2022. ACM,
414-427. https://doi.org/10.1145/3544216.3544229

https://researchcomputing.princeton.edu/get-started/mistakes-avoid
https://researchcomputing.princeton.edu/get-started/mistakes-avoid
https://www.usenix.org/conference/fast24/presentation/qian
https://www.usenix.org/conference/osdi21/presentation/qiao
https://www.usenix.org/conference/osdi21/presentation/qiao
https://docs.ray.io/en/latest/cluster/getting-started.html
https://www.reddit.com/r/MachineLearning/comments/k07jn9/d_research_group_gpu_sharing_some_opensource_tool/
https://www.reddit.com/r/MachineLearning/comments/k07jn9/d_research_group_gpu_sharing_some_opensource_tool/
https://www.reddit.com/r/MachineLearning/comments/k07jn9/d_research_group_gpu_sharing_some_opensource_tool/
https://www.reddit.com/r/MachineLearning/comments/ve987y/d_what_is_the_best_way_to_manage_gpu_server_for/
https://www.reddit.com/r/MachineLearning/comments/ve987y/d_what_is_the_best_way_to_manage_gpu_server_for/
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1007/S10664-024-10471-7
https://www.run.ai/guides/multi-gpu/simplify-gpu-sharing-part-1
https://www.run.ai/guides/multi-gpu/simplify-gpu-sharing-part-1
https://slurm.schedmd.com/overview.html
https://slurm.schedmd.com/strigger.html
https://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1802.05799
https://spark.apache.org/docs/latest/cluster-overview.html
https://www.ssh.com/academy/ssh/tunneling-example
https://www.ssh.com/academy/ssh/tunneling-example
https://www.sherlock.stanford.edu/docs/user-guide/running-jobs/
https://www.sherlock.stanford.edu/docs/user-guide/running-jobs/
https://doi.org/10.1145/3600006.3613175
https://doi.org/10.1145/3600006.3613175
https://tacc.ust.hk/#opensource
https://tacc.ust.hk/
https://tacc.ust.hk/
https://kubernetes.io/docs/concepts/overview/
https://blog.magnum.graphics/backstage/pot-array-packing/
https://www.usenix.org/conference/nsdi24/presentation/wang-hao
https://www.usenix.org/conference/nsdi24/presentation/wang-hao
https://www.usenix.org/conference/nsdi23/presentation/wang-zilong
https://www.usenix.org/conference/nsdi23/presentation/wang-zilong
https://doi.org/10.1109/71.932708
https://www.usenix.org/conference/nsdi22/presentation/weng
https://www.usenix.org/conference/nsdi22/presentation/weng
https://arxiv.org/abs/2110.01556
https://arxiv.org/abs/2110.01556
https://arxiv.org/abs/2110.01556
https://www.usenix.org/conference/nsdi23/presentation/you
https://www.usenix.org/conference/nsdi23/presentation/you
https://medium.com/@yushantripleseven/managing-multiple-cuda-cudnn-installations-ba9cdc5e2654
https://medium.com/@yushantripleseven/managing-multiple-cuda-cudnn-installations-ba9cdc5e2654
https://medium.com/@yushantripleseven/managing-multiple-cuda-cudnn-installations-ba9cdc5e2654
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi23/presentation/zhang-junxue
https://www.usenix.org/conference/nsdi23/presentation/zhang-junxue
https://doi.org/10.1145/3544216.3544229

	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 Existing Solutions for Shared ML Clusters
	2.2 Cluster Schedulers and Computing Frameworks
	2.3 Motivations and Requirements

	3 Design and Implementation
	3.1 Layer 1: Job Profile Layer
	3.2 Layer 2: Adapter Layer
	3.3 Layer 3: Scheduler Layer
	3.4 Layer 4: Execution Layer
	3.5 SING Implementation

	4 Usability and Accessibility
	4.1 Operation and Maintenance Cost
	4.2 User Experience

	5 Operation and Analysis
	5.1 Usage Statistics: Temporal Patterns
	5.2 Usage Statistics: Job-level Characteristics
	5.3 System Availability & Maintenance

	6 SING Open Source
	7 Limitations
	8 Related Work and Discussion
	9 Conclusion
	Acknowledgments
	References

